<一>数学美的表现
美,作为现实事物和现象,物质产品和精神产品,艺术作品等属性总和,具有匀称性、比例性、和谐,色彩变幻。鲜明性和新颖性,作为精神产品的数学就具有上述美的特征。我们知道,数学的世界,是一个充满了美的世界:数的美、式的美、形的美……,在那里,我们可以感受到和谐、比例、整体和对称,我们可以感受到布局的合理,结构的严谨、关系的和谐以及形式的简洁。
数学美的表现形式是多种多样的,从数学内容看,有概念之美、公式之美、体系之美等;从数学的方法及思维看,有简约之美、类比之美、抽象之美、无限之美等;从狭义美学意义上看,有对称之美、和谐之美、奇异之美等。
经通过对数学美表现的研究,我们可以肯定的回答,数学中含有美的因素,数学发展受美育思想的影响,在此,可以借助古代哲学家、数学家普洛克拉斯断言:“哪里有数,哪里就有美。”
<二>数学美的功能:
审美教育的范围正日益广泛地渗透到人类社会的各个领域之中。人们不仅通过音乐,艺术,而且通过自然美、社会美、科学美,得到美的熏陶,美化精神的境界。美育,对使学生树立正确的审美观,提高学生的审美能力和审美创造能力,塑造学生完善的人格,促进学生的全面发展,有着非常重要和积极的作用。
数学美的功能,主要体现在下面几个方面:
(1) 数学美能够培养人们创造、发明数学的激情。
(2) 数学美能启发人们探求真理的思路。
(3) 数学美感有检验真理的作用。
(4) 寓美于教,能激发学生的学习兴趣。
(5) 数学美感能达到以美启智,提高学生解决问题的能力。
<三>数学美之教育途径
在科学美层次上,提高学生的科学素养。科学和艺术一样,都有自己的美学特征,起着陶冶情操,完善思维品质的作用。其中包括:科学发现中的美学感悟,探索科学规律获得的愉悦,科学思维方法的美妙等诸多方面。科学美的发掘,可以通过种种渠道进行,包括视觉上的美,情理之中意料之外的“惊讶美”,证明技巧运用中的“机智美”,解决生活实际问题时的“实用美”,撰写小论文时的感受到的“创造美”。在中学数学教学过程中,我们可以从中学数学教材内容的美,如概念之美、证明之美、体系之美、无限之美、平衡之美等方面加以探讨,带领学生进入数学美的乐园,陶冶精神情操,激发他们的学兴趣,提高学生的审美能力,培养创造性思维能力。
提高学生的审美能力,教师应当作为必要的审美示范,引导学生感知,欣赏数学美。另一方面,“从实践中来,到实践中去”,只有将美知识应用于实践,审能教育才有意义,学生的审美能力才能得到进一步提高,因此,数学美之教育途径主要有二:一是展示美,二是应用美。其具体探究途径如下:
1. 展示隐含的美
综观当前的教育形势,举国上下正在全力推进素质教育,培养德智体美劳全面发展,具有创新意识和实践能力的人才已成为教育者关注的焦点。德育已得到高度的重视,教育界高举“德育领先”旗帜;智育在传统教学中有着深厚的根基,重视程度不言而喻;体育本着全民健身的宗旨,活动有声有势;劳动教育或许与生活实践比较密切,也相应受到越来载多的人的关注;然而,美育?……美育没有受到相应的重视!此外,我们在谈论人文精神的时候,常常把人文精神定位在追求“真、善、美”和人的全面自由的发展之最高层面上,在讨论艺术美的理论中,也常常谈到“真、善、美”三位一体的问题。怀特海曾经指出,数学是真、善、美的辩证统一。一个正确的数学理论,反映客观事物的本质和规律,这就是真;数学理论不管离现实多远,最后总能找到它的实际用途,体现其为人类服务的价值取向,这是数学的善;数学理论本身的奇特、微妙、简洁有力以及建立这些理论时人的创造性思维这就是数学的美。而这些观点在数学过程中是否得到充分的体现吗?没有!苏霍姆林斯基曾说:“没有审美教育就没有任何教育”。在此,不想夸大美育的作用,但是,作用素质教育的重要组成部分,未能得到充分重视,确是深感遗憾。值得高兴的是,高中数学课程标准(讨论稿)已提出了数学教育必须注意培养学生的科学精神和人文精神,特别是“数学与文化”这一单元体现了数学文化的一个重要功能是在美学方面,这种功能是鼓舞人们对数学的追求化为一种对完善的追求。基于此,提出本课题的研究,或许对中学数学教学中加强美育提供有益的启示。
新课程标准的实施,迫切呼唤着数学教师的角色转换,我们应在新的课程环境下重新塑造自己,并界定自己的职能,使之逐步从“传道、授业、解惑”的权威向与新课程同步成熟的“平等对话者的首席”作根本位移。
在新课程的实践中,在日渐提倡学生个性自由发展的今天,我个人认为,在教学过程中,教师还应该力争做好以下的新角色:
(1)课堂上的主持人。大家看电视时会发现,一场精彩的演出中,主持人虽然是贯串始终,但是并不是大包大揽,由自己亲自表演的。他们用简洁生动而富有感情的话语,串起了一个又一个精彩的节目。可以说课堂也可以是一个大舞台,教师或是设悬,或是点拨,或是指导,而不必长篇大论,大包大揽,把思考,讨论,研究的时间还给学生,从而真正发挥学生的自主探究作用,培养出富有创新性的人才。
(2)独具慧眼的发现者。在一个班级里,学生之间的差异很大:性格不同,爱好不同,欣赏的水平不同,基础不同。在老师眼里,可能存在文化成绩上的“差生”,因此往往戴上有色眼镜去看待。在这样的思维定势下,学生失去学习的宽松环境,对自己缺乏信心,往往会形成恶性循环。教师要担负慧眼独具的发现者。善于发现他们的长处,尽力为他们搭建施展自己才华的舞台,采用赏识成功的方法,激励他们的上进心,利用他们尝试成功喜悦的契机,再循序渐进地进行其他方面的教育!
(3)热情的观众。一场激烈的球赛,总少不了热情的拉拉队,他们的呐喊助威给球员们带来了动力和激情,不管是成功或失败,只要有这种热情,球员们都会有无穷的动力。同样,作为当今的学生,无论是身体还是心理都承受着一定的压力,他们需要的不是父母的教训或教师的责问,是理解和支持。我们教师就要做好热情的观众。在课堂上,让他们充分地展示自己的才艺。精彩时报以掌声,给予充分的肯定,失误时,评论切磋,提出中肯的意见。不因为学生一两次的失误而对他丧失信心,当老师对学生充满信心时,也正是学生发奋拼搏大步迈向成功的时候!
总之,今天的教育是为了孩子的明天,实施新课程标准,呼唤我们数学同仁携起手来共同做好角色转换。
4.注重信息技术与数学课程内容的整合
《标准》要求普遍使用科学型计算器,以及各种数学教育平台。特别是以统计作为整合的突破口,加强数学与信息技术的结合。在内容上,突出“算法”在整个数学发展中的独特作用,成为理解数学发展的重要线索,力求把算法溶入到数学课程的各相关部分。
另外,新教材还落实了诸如:“发展学生的数学应用意识,培养学生的数学建模能力”;“提高学生的数学思维能力”;“建立合理科学的评价机制”;“与时俱进的打好双基”等等所有《标准》要求的理念。
2003年4月,教育部颁发了《普通高中数学课程标准(实验)》(以下简称《标准》)。《标准》是从国际意识、时代需求、国民素质、个性发展等各个方面综合考虑,形成了以下的课堂教学的基本理念。
1.为21世纪我国公民提供必要的数学基础
高中教育仍然属于基础教育阶段。高中数学课程由必修系列课程和选修系列课程组成,必修系列课程是为了满足所有学生的共同数学需求;选修系列课程是为了满足学生的不同数学需求,但它仍然是学生发展所需要的基础性数学课程。
为了追求更高水平的教育品质,以迎接21世纪的挑战,轰轰烈烈的课程改革已奏响了序曲,一开始它就显现出时代特有的脉搏,体现着新的走向。几年内,新课程走进了学校,走进了课堂,影响着素质教育的进程。由于时代的快速变迁、知识经济的来临、全球化的课改风潮,基础教育课程改革希望能使现存的课程理念和教学实践“脱胎换骨”,并重新思考现代教育的新方向。
“新课标来了,我们怎么教?”这是广大教师的困惑与呼声,也是大家最为迫切的需求。下面就新课程改革与中学数学教学的几个关注的问题谈些个人看法,与在座的各位同仁共同商榷。不妥之处,请指正。
类型Ⅴ:设二次函数ƒ(x)=ax2+bx+c(a>0)方程ƒ(x)-x=0的两个根x1,x2满足0<x1<x2<。
(Ⅰ)当X∈(0,x1)时,证明X<ƒ(x)<x1。
(Ⅱ)设函数ƒ(x)的图象关于直线x=x0对称,证明x0< 。
解题思路:
本题要证明的是x<ƒ(x),ƒ(x)<x1和x0< ,由题中所提供的信息可以联想到:①ƒ(x)=x,说明抛物线与直线y=x在第一象限内有两个不同的交点;②方程ƒ(x)-x=0可变为ax2+(b-1)x+1=0,它的两根为x1,x2,可得到x1,x2与a.b.c之间的关系式,因此解题思路明显有三条①图象法②利用一元二次方程根与系数关系③利用一元二次方程的求根公式,辅之以不等式的推导。现以思路②为例解决这道题:
(Ⅰ)先证明x<ƒ(x),令ƒ(x)=ƒ(x)-x,因为x1,x2是方程ƒ(x)-x=0的根,ƒ(x)=ax2+bx+c,所以能ƒ(x)=a(x-x1)(x-x2)
因为0<x1<x2,所以,当x∈(0,x1)时, x-x1<0, x-x2<0得(x-x1)(x-x2)>0,又a>0,因此ƒ(x) >0,即ƒ(x)-x>0.至此,证得x<ƒ(x)
根据韦达定理,有 x1x2= ∵ 0<x1<x2<,c=ax1x2<x=ƒ(x1), 又c=ƒ(0),∴ƒ(0)<ƒ(x1), 根据二次函数的性质,曲线y=ƒ(x)是开口向上的抛物线,因此,函数y=ƒ(x)在闭区间[0,x1]上的最大值在边界点x=0或x=x1处达到,而且不可能在区间的内部达到,由于ƒ(x1)>ƒ(0),所以当x∈(0,x1)时ƒ(x)<ƒ(x1)=x1,
即x<ƒ(x)<x1
|
函数ƒ(x)的图象的对称轴为直线x=- ,且是唯一的一条对称轴,因此,依题意,得x0=-,因为x1,x2是二次方程ax2+(b-1)x+c=0的根,根据违达定理得,x1+x2=-,∵x2-<0,
∴x0=-=(x1+x2-)<,即x0=。
二次函数,它有丰富的内涵和外延。作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以偏拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。
二次函数的内容涉及很广,本文只讨论至此,希望各位同仁在高中数学教学中也多关注这方面知识,使我们对它的研究更深入。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com