一堂好课也应设“矛盾”而终,使其完而未完,意味无穷。在一堂课结束时,根据知识的系统,承上启下地提出新的问题,这样一方面可以使新旧知识有机地联系起来,同时可以激发起学生新的求知欲望,为下一节课的教学作好充分的心理准备。我国章回小说就常用这种妙趣夺人的心理设计,每当故事发展到高潮,事物的矛盾冲突激化到顶点的时候,当读者急切地盼望故事的结局时,作者便以“欲知后事如何,且听下回分解”结尾,迫使读者不得不继续读下去!课堂何尝不是如此,一堂好课不是讲完了就完了,而是词已尽意无穷。
如在解不等式
时,一位教师先利用学生已有的知识解决这个问题,即采用解两个不等式组来解决,接着,又用如下的解法:
原不等式可化为:
即
,所以原不等式解集为:
,学生会惊疑,唉!这是怎么解的,解法这么好!这位教师说道:“你想知道解法吗?我们下节课再深入具体地探究”.这样就激起了学生的求知欲望,为下节课的教学作好了充分的心理准备。
当然,教师提出的问题必须转化为学生自己思维的矛盾。只有把客观矛盾转化为学生自身的思维矛盾,才能产生激疑效应。
二〇〇二年八月八日
英国心理学家贝恩布里奇说过:“差错人皆有之,作为教师不利用是不能原谅的。”学生在学习数学的过程中最常见的错误是,不顾条件或研究范围的变化,丢三掉四,或解完一道题后不检查、不思考。故在学生易出错之处,让学生去尝试,去“碰壁”和“跌跤”,让学生充分“暴露问题”,然后顺其错误认真剖析,不断引导,使学生恍然大悟,留下深刻印象。
如:若函数
图象都在X轴上方,求实数a的取值范围。
学生因思维定势的影响,往往错解为a>0且
,得出0<a <1,而忽略了a=0的情况。
教材中有些内容是枯燥乏味,艰涩难懂的。如数列的极限概念及无穷等比数列各项和的概念比较抽象,是难点。如对于
=1这一等式,有些同学学完了数列的极限这一节后仍表怀疑。为此,一位教师在教学中插入了一段“关于分牛传说的析疑”的故事:传说古代印度有一位老人,临终前留下遗嘱,要把19头牛分给三个儿子。老大分总数的1/2,老二分总数的1/4,老三分总数的1/5。按印度的教规,牛被视为神灵,不能宰杀,只能整头分,先人的遗嘱更必须无条件遵从。老人死后,三兄弟为分牛一事而绞尽脑汁,却计无所出,最后决定诉诸官府。官府一筹莫展,便以“清官难断家务事”为由,一推了之。邻村智叟知道了,说:“这好办!我有一头牛借给你们。这样,总共就有20头牛。老大分1/2可得10头;老二分1/4可得5头;老三分1/5可得4头。你等三人共分去19头牛,剩下的一头牛再还我!”真是妙极了!不过,后来人们在钦佩之余总带有一丝怀疑。老大似乎只该分9.5头,最后他怎么竟得了10头呢?学生很感兴趣,……老师经过分析使问题转化为学生所学的无穷等比
数列各项和公式
(|q|<1)的应用。寓解疑于趣味之中。
教学从矛盾开始就是从问题开始。思维自疑问和惊奇开始,在教学中可设计一个学生不易回答的悬念或者一个有趣的故事,激发学生强烈的求知欲望,起到启示诱导的作用。如在教授等差数列求和公式时,有位教师先讲了一个数学小故事:德国的“数学王子”高斯,在小学读书时,老师出了一道算术题:1+2+3+……+100=?,老师刚读完题目,高斯就在他的小黑板上写出了答案:5050,其他同学还在一个数一个数的挨个相加呢。那么,高斯是用什么方法做得这么快呢?这时学生出现惊疑,产生一种强烈的探究反响。这就是今天要讲的等差数列的求和方法--倒序相加法……。
(三)运用
运用,是指应用学过的知识和已有的经验,在一定的情境中解决问题,是知识转化为能力的具体表现。运用可分为模仿运用、封闭运用和开放运用三级。
1. 模仿运用:是指直接利用某些公式、定理、法则、范例等,在相似的情境里解决相似的问题。它的主要特征有三点:一是定理法则等的直接应用,不作复杂的转换;二是与原始学习的情境相同或相似;三是解决的问题与原始的问题相似,即在旧情境中解决问题。很明显,这是一种低水平的运用。主要行为表现有:(1)能按一定步骤、方法、程序处理新问题,如仿照指数函数的性质,总结出对数函数的性质。(2)能根据例题、解决条件、模式相同或相似的新问题,如利用例题的处理方法,解决每节的练习题和少部分习题,这样的运用多数能在课堂上及时完成。
2. 封闭运用:它是指应用学过的知识和已有的技能,解决情境中的问题。所谓“新情境”,是指学生遇到的问题与经历过的问题不论是条件、结论和结构均不相同。解决这类问题,一般不能直接利用现成的或经验过的模式来完成,大都需要进行一系列转化过程才能实现。由于经过一定的迁移可转化为旧情境,所以是一种封闭式的运用。主要行为表现有:(1)将新问题转化为旧问题解决,如将无理不等式化为有理不等式组求解。(2)把非标准式转化为标准式,将问题换角度解决,如用换底法求三棱锥的体积,又如用换元法、三角代换法、数形结合法等解决数学问题。
3. 开放运用:它是较高层次的思维能力,在对新情境下出现的结构复杂的问题能进行全面的剖析,对一般的问题能进行多角度的分析综合,寻求多种解决方法,并能进行比较,还包括对新背景下的新问题经过一定的逻辑思维做出综合性的处理意见,甚至能利用多种知识设计出新问题。简单地说开放运用就是要对新旧情境进行发展和评价。主要行为表现有:(1)能用多种不同的方法,解释数学概念、法则、公式。(2)能从不同的角度分析问题,采用多种方法解决问题,如一题多解、分类讨论等。(3)能用分析综合法寻求解决复杂问题的思路(4)能修正数学问题中的错误(5)能改进和设计数学问题。
经过几年的努力,我们已编写出了本实验课题的实验教材。在教材中,以课时为单位均设计上了教学目标。因此对课时教学目标的制定和分类进行科学地研究具有十分重要的意义。上面仅就此作了初步探讨,不尽完善,在今后的教改实践中还需要作进一步深入研究,使之更趋完善。
1999年10月
参考文献:
张振国、刘子忠、杜在义主编《教学目标实验与研究》(北京师范大学出版社)
(二)理解
理解是指抓住材料的实质,把握材料的组成要素,能准确地叙述材料的结构特征,熟悉其适用范围和应用条件,掌握其应用模型,并能在规范或相似的环境中进行一定的发展和推理,它注重“为什么”,也就是知其所以然。理解可分为说明性理解和探究性理解两级。
1. 说明性理解:就是对知识、技能的实质性领会,能用自己的语言表述出来或换一种形式表述出来,能说出其结构的组成要素及相互关系。主要行为表现有:(1)能把定义概念分解成几种不同的要素,如说明集合的三个特征,说明数列极限的“ε-N”定义的组成要素等。(2)能将一种形式(文字、符号、式子、图象等)的数学表示转化为他种形式表示,如将等差数列的定义用数学式表示出来,根据给定的曲线方程画出其曲线,由函数解析式作其图象,将极限的运算法则用文字语言叙述等。(3)能准确地区分定理、命题的题设和结论。能说明公式法则的适用条件和范围。
2. 探究性理解:就是要求学生亲自参与提出、解决、研究、发展问题的全过程,对某一事物在一定范围内可能的发展趋势、倾向或结论,经过学生自己动手获得,它是较高层次上的理解。主要行为表现有:(1)说出某概念的所有外延形式,如说出任意角的分类、复数的分类、六面体的分类等。(2)说出某定理、公式的各种可能的用途,如说出同角三角函数关系式的作用。(3)对于给出的某些条件推出一些结论,如推导等差数列的通项公式、前n项和的公式。(4)证明一些定理和公式。(5)对一些问题成立条件进行深入的探索和研究,如研究三角形不等式(|a|-b|≤|a+b|≤|a|+|b|)等号成立的条件。
(一) 识记
识记是指把某种意识到的数学信息,按其原本的形态或初步加工改组之后的形态,储存在大脑之中,以保证在需要的时候,能再认或再现这些信息。简单地说,就是记住和识别事实材料,使之再认或再现,不求理解。它是学习行为表现的最低水平。它又可分为认知和识别两级。
1. 认知:指反复感知事物并记住事物特征的过程。它表现为对事物和表象原型的记忆,它只涉及“是什么”,这是一种最低级的“刺激--反应”过程。主要行为表现有:(1)写出或说出各种定义、定理、法则、方法、步骤等。如写出数列的定义,说出数学归纳法的证题步骤。(2)画出各种明确要求的简单的几何图形、函数图象和方程的曲线。(3)写出各种常用的数学符号,如各种集合符号,基本初等函数的解析式,排列数、组合数符号等等。(4)写出各种公式或各种关系式,如平均数不等式,柱、锥、台、球的面积公式和体积公式,圆锥曲线的标准方程等。
2. 识别:是指在反复感知事物的过程中,能对事物与记忆中的其它相似或不相似的事物进行比较、对照和鉴别。在该过程中,能准确地找出其相互间的异同点,这种异同点应局限在“外部特征”上。主要行为表现有:(1)能指出各种具体的几何图形之间的差异,如球与球面、正弦曲线与余弦曲线等。(2)能说出各种关系式之间结构上的异同,如幂函数的解析式与指数函数的解析式,椭圆的标准方程与双曲线的标准方程。(3)能指出概念间在定义上的异同,如反正弦函数的定义与反余弦函数的定义、等差数列与等比数列的定义、排列与组合的定义、椭圆与双曲线的定义等。(4)能准确说出两种不同运算或解题模式、方法、步骤在程序或过程环节上的差异,如解指数方程、对数方程与解指数不等式、对数不等式在格式和步骤上的异同,用综合法和分析法在证明不等式时程序和格式叙述上的差异等。
我们在教改实践中所采用的是教学目标三级分类,即“识记”、“理解”、“运用”。我们认为对认知领域课时教学目标这样分类,有利于与教学大纲建立比较吻合的关系,具有实用性和适用性,便于制定和操作。其分类体系是:
参考有关教育理论著作,我们在教学实践中,是这样表述教学目标的,即用一个从“行为”至“内容”的陈述句。主要包含如下几个要素:(1)句子的主语是“学生”,一般省略掉。(2)句子的谓语。它是表达学生行为的一个动词,这个行为动词必须具备外显、明确、可测的特点。(3)句子宾语。它是表示具体教学内容的,必须尽可能具体。(4)句子的修饰成份。它是一个给定的条件,是状语,说明在何种情况下要求学生达到这样的行为。此部分也可以没有。(5)合格的标准。为了把一些教学目标的要求定的更为准确,有时需要在目标后面加以补充说明,这一要素不常用。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com