0  421767  421775  421781  421785  421791  421793  421797  421803  421805  421811  421817  421821  421823  421827  421833  421835  421841  421845  421847  421851  421853  421857  421859  421861  421862  421863  421865  421866  421867  421869  421871  421875  421877  421881  421883  421887  421893  421895  421901  421905  421907  421911  421917  421923  421925  421931  421935  421937  421943  421947  421953  421961  447090 

2.难点:一个锐角的正弦(余弦)与它的余角的余弦(正弦)之间的关系的应用.

试题详情

1.重点:使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系并会应用.

试题详情

(三)德育渗透点

培养学生独立思考、勇于创新的精神.

试题详情

(二)能力训练点

逐步培养学生观察、比较、分析、综合、抽象、概括的逻辑思维能力.

试题详情

(一)知识教学点

使学生了解一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系.

试题详情

        14.1  正弦和余弦(二)         
一、概念:    三、例1----------  四、特殊角的正余弦值
-------------    -------------------   -----------------------
二、范围:    ------------------   五、例2 ------------

正弦和余弦(三)

试题详情

教材习题14.1中A组3.

预习下一课内容.

试题详情

(四)总结、扩展

首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值.知道任意锐角A的正、余弦值都在0-1之间,即

0<sinA<1,               0<cosA<1(∠A为锐角).

还发现Rt△ABC的两锐角∠A、∠B,sinA=cosB,cosA=sinB.正弦值随角度增大而增大,余弦值随角度增大而减小.”

试题详情

(三)重点、难点的学习与目标完成过程

正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含几个字母的符号组来表示,因此概念也是难点.

在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如图6-3:

请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力.教师板书:在△ABC中,∠C为直角,我们把锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA.

若把∠A的对边BC记作a,邻边AC记作b,斜边AB记作c,则

引导学生思考:当∠A为锐角时,sinA、cosA的值会在什么范围内?得结论0<sinA<1,0<cosA<1(∠A为锐角).这个问题对于较差学生来说有些难度,应给学生充分思考时间,同时这个问题也使学生将数与形结合起来.

教材例1的设置是为了巩固正弦概念,通过教师示范,使学生会求正弦,这里不妨增问“cosA、cosB”,经过反复强化,使全体学生都达到目标,更加突出重点.

例1  求出图6-4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值.

学生练习1中1、2、3.

让每个学生画含30°、45°的直角三角形,分别求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.

例2  求下列各式的值:

为了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:

(1)sin45°+cos45;         (2)sin30°·cos60°;

在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,sin20°大概在什么范围内,cos50°呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神.还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小.”为查正余弦表作准备.

试题详情

(二)整体感知

只要知道三角形任一边长,其他两边就可知.

而上节课我们发现:只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定.这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.

通过与“30°角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.

试题详情


同步练习册答案