∵CE=
,AC=1 , ∴CD=![]()
∠ACB=900,AC=1,C点到AB1的距离为CE=
,D为AB的中点.
(1)求证:AB1⊥平面CED;
(2)求异面直线AB1与CD之间的距离;
【解】(1)∵D是AB中点,△ABC为等腰直角三角形,∠ABC=900,∴CD⊥AB又AA1⊥平面ABC,∴CD⊥AA1.
∴CD⊥平面A1B1BA ∴CD⊥AB1,又CE⊥AB1, ∴AB1⊥平面CDE;
(2)由CD⊥平面A1B1BA ∴CD⊥DE
∵AB1⊥平面CDE ∴DE⊥AB1
∴DE是异面直线AB1与CD的公垂线段
5.【江苏?启东中学模拟】
|