22.(本小题满分14分)
设椭圆的左右焦点分别为,离心率,点到右准线为的距离为
(Ⅰ)求的值;
(Ⅱ)设是上的两个动点,,
证明:当取最小值时,
【解】:因为,到的距离,所以由题设得
解得
由,得
(Ⅱ)由得,的方程为
故可设
由知知
得,所以
当且仅当时,上式取等号,此时
所以,
【点评】:此题重点考察椭圆基本量间的关系,进而求椭圆待定常数,考察向量与椭圆的综合应用;
【突破】:熟悉椭圆各基本量间的关系,数形结合,熟练进行向量的坐标运算,设而不求消元的思想在圆锥曲线问题中应灵活应用。
四川省内江市隆昌县黄家中学 程亮 编辑
21.(本小题满分12分)
设数列的前项和为,
(Ⅰ)求
(Ⅱ)证明: 是等比数列;
(Ⅲ)求的通项公式
【解】:(Ⅰ)因为,所以
由知
得 ①
所以
(Ⅱ)由题设和①式知
所以是首项为2,公比为2的等比数列。
(Ⅲ)
【点评】:此题重点考察数列的递推公式,利用递推公式求数列的特定项,通项公式等;
【突破】:推移脚标两式相减是解决含有的递推公式的重要手段,使其转化为不含的递推公式,从而针对性的解决;在由递推公式求通项公式时应重视首项是否可以被吸收是易错点,同时注意利用题目设问的层层深入,前一问常为解决后一问的关键环节为求解下一问指明方向。
20.(本小题满分12分)
设和是函数的两个极值点。
(Ⅰ)求和的值;
(Ⅱ)求的单调区间
【解】:(Ⅰ)因为
由假设知:
解得
(Ⅱ)由(Ⅰ)知
当时,
当时,
因此的单调增区间是
的单调减区间是
【点评】:此题重点考察利用导数研究函数的极值点,单调性,最值问题;
【突破】:熟悉函数的求导公式,理解函数极值与导数、函数单调性与导数的关系;重视图象或示意图的辅助作用。
19.(本小题满分12分)
如图,平面平面,四边形与都是直角梯形,
,,分别为的中点
(Ⅰ)证明:四边形是平行四边形;
(Ⅱ)四点是否共面?为什么?
(Ⅲ)设,证明:平面平面;
【解1】:(Ⅰ)由题意知,
所以
又,故
所以四边形是平行四边形。
(Ⅱ)四点共面。理由如下:
由,是的中点知,,所以
由(Ⅰ)知,所以,故共面。又点在直线上
所以四点共面。
(Ⅲ)连结,由,及知是正方形
故。由题设知两两垂直,故平面,
因此是在平面内的射影,根据三垂线定理,
又,所以平面
由(Ⅰ)知,所以平面。
由(Ⅱ)知平面,故平面,得平面平面
【解2】:由平面平面,,得平面,
以为坐标原点,射线为轴正半轴,建立如图所示的直角坐标系
(Ⅰ)设,则由题设得
所以
于是
又点不在直线上
所以四边形是平行四边形。
(Ⅱ)四点共面。理由如下:
由题设知,所以
又,故四点共面。
(Ⅲ)由得,所以
又,因此
即
又,所以平面
故由平面,得平面平面
【点评】:此题重点考察立体几何中直线与直线的位置关系,四点共面问题,面面垂直问题,考察了空间想象能力,几何逻辑推理能力,以及计算能力;
【突破】:熟悉几何公理化体系,准确推理,注意逻辑性是顺利进行解法1的关键;在解法2中,准确的建系,确定点坐标,熟悉向量的坐标表示,熟悉空间向量的计算在几何位置的证明,在有关线段,角的计算中的计算方法是解题的关键。
18.(本小题满分12分)
设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(Ⅱ)求进入商场的3位顾客中至少有2位顾客既未购买甲种也未购买乙种商品的概率。
【解】:(Ⅰ)记表示事件:进入商场的1位顾客购买甲种商品,
记表示事件:进入商场的1位顾客购买乙种商品,
记表示事件:进入商场的1位顾客购买甲、乙两种商品中的一种,
(Ⅱ)记表示事件:进入商场的3位顾客中都未选购甲种商品,也未选购买乙种商品;
表示事件:进入商场的1位顾客未选购甲种商品,也未选购买乙种商品;
表示事件:进入商场的3位顾客中至少有2位顾客既未选购甲种商品,也未选选购乙种商品;
【点评】:此题重点考察相互独立事件有一个发生的概率;
【突破】:分清相互独立事件的概率求法;对于“至少”常从反面入手常可起到简化的作用;
17.(本小题满分12分)
求函数的最大值与最小值。
【解】:
由于函数在中的最大值为
最小值为
故当时取得最大值,当时取得最小值
【点评】:此题重点考察三角函数基本公式的变形,配方法,符合函数的值域及最值;
【突破】:利用倍角公式降幂,利用配方变为复合函数,重视复合函数中间变量的范围是关键;
16.设数列中,,则通项 ___________。
【解】:∵ ∴,,
,,,,
将以上各式相加得:
故应填;
【考点】:此题重点考察由数列的递推公式求数列的通项公式;
【突破】:重视递推公式的特征与解法的选择;抓住中系数相同是找到方法的突破口;此题可用累和法,迭代法等;
15.从甲、乙等10名同学中挑选4名参加某校公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有________________种。
【解】:∵从10个同学中挑选4名参加某项公益活动有种不同挑选方法;
从甲、乙之外的8个同学中挑选4名参加某项公益活动有种不同挑选方法;
∴甲、乙中至少有1人参加,则不同的挑选方法共有种不同挑选方法 故填;
【考点】:此题重点考察组合的意义和组合数公式;
【突破】:从参加 “某项”切入,选中的无区别,从而为组合问题;由“至少”从反面排除易于解决;
14.已知直线与圆,则上各点到的距离的最小值为_____________。
【解】:如图可知:过原心作直线的垂线,则长即为所求;
∵的圆心为,半径为
点到直线的距离为
∴ 故上各点到的距离的最小值为
【点评】:此题重点考察圆的标准方程和点到直线的距离;
【突破】:数形结合,使用点到直线的距离距离公式。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com