分析 由∠BAC=90°,于是得到∠ABF+∠AFB=90°,根据垂直的定义得到∠ADB=90°,于是得到∠EBD+∠BED=90°,根据角平分线的定义得到∠ABF=∠EBD,等量代换得到∠AFB=∠BED,∠AEF=∠AFB,根据等腰三角形的判定定理即可得到结论.
解答 解:∵∠BAC=90°,
∴∠ABF+∠AFB=90°,
又∵AD⊥BC,
∴∠ADB=90°,
∴∠EBD+∠BED=90°,
又∵BF平分∠ABC,
∴∠ABF=∠EBD,
∴∠AFB=∠BED,
又∵∠AEF=∠BED,
∴∠AEF=∠AFB,
∴AE=AF,
∵AE=13,
∴AF=13.
点评 本题考查了等腰三角形的判定和性质,角平分线的定义,熟练掌握等腰三角形的性质是解题的关键.
科目:初中数学 来源: 题型:解答题
| 次数 | 1 | 2 | 3 | 4 | 5 |
| 小明 | 13.3 | 13.4 | 13.3 | 13.2 | 13.3 |
| 小亮 | 13.2 | 13.4 | 13.1 | 13.5 | 13.3 |
| 平均数 | 极差 | 方差 | |
| 小明 | 13.3 | 0.2 | 0.004 |
| 小亮 | 13.3 | 0.4 | 0.02 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | -$\frac{24}{5}$ | B. | $\frac{26}{5}$ | C. | $\frac{24}{5}$ | D. | -$\frac{26}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1.5cm2 | B. | 3cm2 | C. | 12cm2 | D. | 24cm2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com