分析 (1)连接OC,如图,由圆周角定理得到∠ACB=90°,则OC=OA=OB=$\frac{1}{2}$AB=5,易得△AOC是等边三角形,所以∠CAB=60°,接着利用圆周角定理得到∠COB=2∠CAB=120°,然后根据弧长公式计算弧BC的长度;
(2)连接OD,如图,由于CD平分∠ACB,则∠ACD=∠DCB=45°,利用圆周角定理得到∠DOB=$\frac{1}{2}$∠DCB=90°,再根据平行线的性质易得∠ODF=90°,即OD⊥DF,然后根据切线的判定定理可得DF是⊙O的切线.
解答
解:(1)连接OC,如图,
∵AB是直径,
∴∠ACB=90°,OA=OB,
∴OC=OA=OB=$\frac{1}{2}$AB=5,
∵AC=5,
∴△AOC是等边三角形,
∴∠CAB=60°,
∴∠COB=2∠CAB=120°,
∴弧BC的长度为$\frac{120•π•5}{180}$=$\frac{10}{3}$π;
(2)DF是⊙O的切线.理由如下:
连接OD,如图,
∵CD平分∠ACB,∠ACB=90°
∴∠ACD=∠DCB=45°,
∴∠DOB=$\frac{1}{2}$∠DCB=90°,
∵AB∥DF,
∴∠DOB+∠ODF=180°,
∴∠ODF=90°,
∴OD⊥DF
又∵OD为半径,
∴DF是⊙O的切线.
点评 本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.解决(1)小题的关键是确定∠BOC的度数.
科目:初中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$x | B. | x | C. | 6$\sqrt{2}$x | D. | $\frac{2\sqrt{2}}{3}$x |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 8 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com