精英家教网 > 初中数学 > 题目详情
6.如图,AB∥CD,BC∥AD,AB=CD,BE=DF,图中全等的三角形的对数是(  )
A.3B.4C.5D.6

分析 根据平行线的性质求出∠ABD=∠CDB,∠ADB=∠CBD,根据ASA推出△ABD≌△CDB,根据全等三角形的对应边相等得出AD=BC,AB=CD,再根据SAS推出△ABE≌△CDF,根据全等三角形的对应边相等得出AE=CF,求出BF=DE,根据SSS推出△ADE≌△CBF即可.

解答 解:∵AB∥CD,BC∥AD,
∴∠ABD=∠CDB,∠ADB=∠CBD.
在△ABD和△CDB中
$\left\{\begin{array}{l}{∠ABD=∠CDB}\\{BD=DB}\\{∠ADB=∠CBD}\end{array}\right.$,
∴△ABD≌△CDB(ASA),
∴AD=BC,AB=CD.
在△ABE和△CDF中
$\left\{\begin{array}{l}{AB=CD}\\{∠ABE=∠CDF}\\{BE=DF}\end{array}\right.$,
∴△ABE≌△CDF(SAS),
∴AE=CF.
∵BE=DF,
∴BE+EF=DF+EF,
∴BF=DE,
在△ADE和△CBF中
$\left\{\begin{array}{l}{AD=CB}\\{DE=BF}\\{AE=CF}\end{array}\right.$,
∴△ADE≌△CBF(SSS),
即3对全等三角形,
故选A.

点评 本题考查了平行线的性质,全等三角形的性质和判定的应用,能正确根据定理进行推理是解此题的关键,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的对应边相等,对应角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.扬子江药业集团生产的某种药品的长方体包装盒的侧面展开图如图所示.根据图中数据,如果长方体盒子的长比宽多4cm,求这种药品包装盒的体积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解方程
(1)2x2-3x-2=0;
(2)x(2x+3)-2x-3=0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.小明在假期里参加四天一期的夏令营活动,这四天各天的日期和为66,则夏令营的开营日(  )
A.15日B.16日C.17日D.18日

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,把△ABC绕着点A顺时针方向旋转34°,得到△AB′C′,点C刚好落在边B′C′上.则∠C′=(  )
A.56°B.62°C.68°D.73°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列计算结果为负数的是(  )
A.-(-2)3B.-(-2)4C.(-1)-(-3)D.16÷(-4)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.下表为北京市居民每月用水收费标准,(单位:元/m3).
用水量(m3单价
0-15a
15.1-21.7a+2
21.8以上a+4
(1)某用户用水4立方米,共交水费20元,求a的值;
(2)在(1)的条件下,该用户12月份交水费89元,请问该用户12月份用水多少立方米?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.点A(-2,3)与点B(a,b)关于坐标原点对称,则a+b的值为-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.若二次函数y=a1x2+b1x+c1的图象记为C1,其顶点为A;二次函数y=a2x2+b2x+c2的图象记为C2,其顶点为B.且满足点A在C2上,点B在C1上,则称这两个二次函数互为“伴侣二次函数“
(1)一个二次函数的“伴侣二次函数”有无数个
(2)①求二次函数y=x2+4x+3与x轴的交点;
     ②求以上述交点为顶点的二次函数y=x2+4x+3的“伴侣二次函数”.
(3)若二次函数y1=a1x2+b1x+c1与其伴侣二次函数y2=a2x2+b2x+c2的顶点不重合.则a1与a2之间是否存在某种数量关系?若存在.请写出探究过程.若不存在,请说明理由.

查看答案和解析>>

同步练习册答案