题目列表(包括答案和解析)
在本章知识应用的过程中,初学者常犯的错误主要表现在:对于诸如机械振动、简谐运动、受迫振动、共振、阻尼振动、等幅振动等众多的有关振动的概念不能深刻的理解,从而造成混淆;不能从本质上把握振动图象和波的图象的区别和联系,这主要是由于振动的图象与波的图象形式上非常相似,一些学生只注意图象的形状,而忽略了图象中坐标轴所表示的物理意义,因此造成了将两个图象相混淆。另外,由于一些学生对波的形成过程理解不够深刻,导致对于波在传播过程中时间和空间的周期性不能真正的理解和把握;由于干涉和衍射的发生条件、产生的现象较为抽象,所以一些学生不能准确地把握相关的知识内容,表现为抓不住现象的主要特征、产生的条件混淆不清。
例1 一个弹簧振子,第一次被压缩x后释放做自由振动,周期为T1,第二次被压缩2x后释放做自由振动,周期为T2,则两次振动周期之比T1∶T2为 [ ]
A.1∶1 B.1∶2
C.2∶1 C.1∶4
[错解] 压缩x时,振幅为x,完成一次全振动的路程为4x。压缩2x时,振幅即为2x,完成一次全振动的路程为8x。由于两种情况下全振动的路程的差异,第二次是第一次的2倍。所以,第二次振动的周期一定也是第一次的2倍,所以选B。
[错解原因] 上述解法之所以错误是因为把振子的运动看成是匀速运动或加速度恒定的匀加速直线运动了。用了匀速或匀加速运动的规律。说明这些同学还是没有掌握振动的特殊规律。
[分析解答] 事实上,只要是自由振动,其振动的周期只由自身因素决定,对于弹簧振子而言,就是只由弹簧振子的质量m和弹簧的劲度系数k决定的,而与形变大小、也就是振幅无关。所以只要弹簧振子这个系统不变(m,k不变),周期就不会改变,所以正确答案为A。
[评析] 本题给出的错解是初学者中最常见的错误。产生这一错误的原因是习惯于用旧的思维模式分析新问题,而不善于抓住新问题的具体特点,这反映了学习的一种思维定势。只有善于接受新知识、新方法,并将其运用到实际问题中去,才能开阔我们分析、解决问题的思路,防止思维定势。
例2 一个单摆,如果摆球的质量增加为原来的4倍,摆球经过平
![]()
A.频率不变,振幅不变 B.频率不变,振幅改变
C.频率改变,振幅不变 D.频率改变,振幅改变
[错解] 错解一:因为单摆的周期(频率)是由摆长l和当地重
![]()
![]()
变(指平衡位置动能也就是最大动能),由机械能守恒可知,势能也不变。所以振幅也不变,应选A。
![]()
而振幅与质量、速度无关(由上述理由可知)所以振幅不变,应选C。
错解三:认为频率要改变,理由同错解二。而关于振幅的改变与否,除了错解一中所示理由外,即总能量不变,而因为重力势能EP=mgh,EP不变,m变为原来的4倍,h一定变小了,即上摆到最高点的高度下降了,所以振幅要改变,应选D。
[错解原因] 此题主要考查决定单摆频率(周期)和振幅的是什么因素,而题中提供了两个变化因素,即质量和最大速度,到底频率和振幅与这两个因素有没有关系。若有关系,有什么关系,是应该弄清楚的。
而错解二和错解三中都认为频率不变,这是因为为不清楚决定单摆的因素是摆长l和当地重力加速度g,而与摆球质量及运动到最低点的速度无关。
错解二中关于频率不变的判断是正确的,错误出现在后半句的结论上。判断只从能量不变去看,当E总不变时,EP=mgh,m变大了,h一定变小。说明有些同学考虑问题还是不够全面。
[分析解答] (1)实际上,通过实验我们已经了解到,决定单
![]()
单摆的周期与质量无关,与单摆的运动速度也无关。当然,频率也与质量和速度无关,所以不能选C,D。
(2)决定振幅的是外来因素。反映在单摆的运动中,可以从能量去观察,从上面分析我们知道,在平衡位置(即最低点)时的动能EK
![]()
的重力势能也不变。但是由于第二次摆的质量增大了(实际上单摆已经变成另一个摆动过程了),势能EP=mgh不变,m大了,h就一定变小了,也就是说,振幅减小了。因此正确答案应选B。
[评析] 本题的分析解答提醒我们,一是考虑要全面,本题中m,v两因素的变化对确定的单摆振动究竟会产生怎样的影响,要进行全面分析;二是分析问题要有充分的理论依据,如本题中决定单摆振动的频率
![]()
![]()
例3 如图6-1所示,光滑圆弧轨道的半径为R,圆弧底部中点为O,两个相同的小球分别在O正上方h处的A点和离O很近的轨道B点,现同时释放两球,使两球正好在O点相碰。问h应为多高?
![]()
[错解] 对B球,可视为单摆,延用单摆周期公式可求B球到达O点的时间:
![]()
对A球,它做自由落体运动,自h高度下落至O点
![]()
![]()
![]()
[错解原因] 上述答案并没有完全错,分析过程中有一点没有考虑,即是振动的周期性,因为B球在圆形轨道上自B点释放后可以做往
![]()
![]()
上述解答漏掉一些解,即上述解答只是多个解答中的一个。
![]()
对B球振动周期
![]()
到达O点的时间为
![]()
![]()
![]()
![]()
![]()
显然,前面的解仅仅是当n=0时的其中一解而已。
![]()
[评析] 在解决与振动有关的问题时,要充分考虑到振动的周期性,由于振动具有周期性,所以此类问题往往答案不是一个而是多个。
例4 水平弹簧振子,每隔时间t,振子的位移总是大小和方向都相
![]()
![]()
![]()
![]()
![]()
[错解] 1.首先排除A,认为A是不可能的。理由是:水平弹簧振子的运动轨迹可简化为如图6-2,O为平衡位置,假设计时开始时,振子位于A点,每隔时间t,振子的位移总是大小和方向都相同,所以t
![]()
![]()
B之间非A即B点,而这两点距平衡位置都等于振幅,所以加速度都等
![]()
![]()
![]()
所以振子的动能总是相同的,所以选C是对的。
![]()
同的,都等于振幅,所以D是对的。
综上所述,应选B,C,D。
[错解原因] 错解1是排除A,之所以产生错误,是因为在头脑中形成思维定势,认为在时间t内,振子只能在一个周期内振动。很多学生在解决振动和波的问题时,习惯上把所有问题都限定在一个周期内,而没有考虑到在时间t内,振子可能已经完成多个全振动了。
错解2的产生主要是对加速度的矢量性认识不够或头脑中根本就没有这个概念,认为位置对称,加速度大小一样就是加速度相同。
3.选择C是对的。
本章中所涉及到的基本方法有:由于振动和波动的运动规律较为复杂,且限于中学数学知识的水平,因此对于这部分内容不可能像研究直线运动、平抛、圆周运动那样从运动方向出发描述和研究物体的运动,而是利用图象法对物体做简谐运动的运动规律及振动在介媒中的传播过程进行描述与研究。图像法具有形象、直观等优点,其中包含有丰富的物理信息,在学习时同学们要注意加以体会;另外,在研究单摆振动的过程中,对于单摆所受的回复力特点的分析,采取了小摆角的近似的处理,这是一种理想化物理过程的方法。
本章内容包括机械振动、回复力、振幅、周期、频率、简谐振动、受迫振动、共振、机械波、波长、波速、横波、纵波、波的干涉和衍射等基本概念,以及单摆振动的周期规律、简谐运动的图像、简谐运动中的能量转化规律、波的图像、波长和频率与波速之间的关系等规律。
26、跳伞运动员做低空跳伞表演,他在离地面224 m高处,由静止开始在竖直方向做自由落体运动.一段时间后,立即打开降落伞,以12.5 m/s2的平均加速度匀减速下降,为了运动员的安全,要求运动员落地速度最大不得超过5 m/s.
(1)求运动员展开伞时,离地面高度至少为多少?着地时相当于从多高处自由落下?
25、一辆长途客车正在以v=20m/s的速度匀速行驶,突然,司机看见车的正前方x=45m处有一只小狗(如图甲所示),司机立即采取制动措施. 从司机看见小狗到长途客车开始做匀减速直线运动的时间间隔△t=0.5s。若从司机看见小狗开始计时(t=0),该长途客车的速度-时间图象如图乙所示。求:
(1)长途客车在△t时间内前进的距离;
(2)长途客车从司机发现小狗至停止运动的这段时间内前进的距离;
(3)根据你的计算结果,判断小狗是否安全。如果安全,请说明你判断的依据;如果不安全,有哪些方式可以使小狗安全。
![]()
![]()
24、
滴水法测重力加速度的做法如下:
(1) 如图所示,让水滴落到垫起来的盘子上,可以听到水滴每次碰到盘子的声音,仔细调整水龙头的阀门,使第一滴水碰到盘子的瞬间,同时第二滴水正好从阀门处开始下落。
(2) 从听到某个水滴的声音开始用秒表计时,并数“1”,以后每听到一次响声,顺次加1,当数到“n”时 ( n 在 50 ~ 100 之间 ),停止计时,秒表上记录的时间为 t 秒。
(3) 用米尺测出水龙头滴水处到盘子的高度为 s 米。则重力加速度的表达式为 g = 。
23、有一个小球沿斜面下滑, 用每隔 0.1 秒拍一次的频闪相机拍摄不同时刻小球的位置(如图所示 ,即照片上相邻两个小球位置的时间间隔为 0.1 秒 ),测得比小球连续相等时间内的位移如表:
![]()
根据以上数据求小球下滑的加速度α= m/s2 ,小球经过B点的速度 vB = m/s。
22、图中是DIS实验得出的从斜面下滑一辆小车的v-t图像,由图可知,小车在AB段时间内运动可近似看作
运动,小车在AB段的加速度是 m/s2,小车在AB段的位移是 m。
21、利用速度传感器与计算机结合,可以自动作出物体运动的图像. 某同学在一次实验中得到的运动小车的速度-时间图像如图所示,以下说法错误的是[ ]
A.小车先做加速运动,后做减速运动
B.小车运动的最大速度约为0.8m/s
C.小车的位移一定大于8m
D.小车做曲线运动
20、
某电脑爱好者设计了一个“猫捉老鼠”的动画游戏:在如图所示的正方体木箱的顶角A处,老鼠从猫的爪中逃出而奔向另一顶角G处的鼠洞,若老鼠的奔跑速率为v,且只能沿木箱的棱运动,猫可以沿木箱的表面和棱运动,则猫为在G处捉住老鼠所做匀速运动的最小速率
。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com