21.(理)(本小题满分14分)
函数![]()
(1)若
是增函数,求a的取值范围;
(2)求
上的最大值.
20.(本小题满分14分).
已知奇函数
是定义
在上的增函数
(1)求b的取值范围;
(2)若
对
恒成立,求实数t的取值范围。
19.(本小题满分13分)
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)f(b),
(1)求证:f(0)=1;
(2)求证:对任意的x∈R,恒有f(x)>0;
(3)证明:f(x)是R上的增函数;
(4)若f(x)·f(2x-x2)>1,求x的取值范围。
18.(本小题满分12分)
已知a是实数,函数
,如果函数
在区间
上有零点,求a的取值范围.
17.(本小题满分12分)
机床厂今年年初用98万元购进一台数控机床,并立即投入生产使用,计划第一年维修、保养费用12万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利额为y万元.
(1)写出y与x之间的函数关系式;
(2)从第几年开始,该机床开始盈利(盈利额为正值);
(3)使用若干年后,对机床的处理方案有两种:
(Ⅰ)当年平均盈利额达到最大值时,以30万元价格处理该机床;
(Ⅱ)当盈利额达到最大值时,以12万元价格处理该机床.
请你研究一下哪种方案处理较为合理?请说明理由.
16.(本小题满分10分)
设命题P:关于x的不等式
为
;
命题Q:
的定义域为R。
如果P或Q为真,P且Q为假,求a的取值范围。
15.给出定义:若![]()
(其中
为整数),则
叫做离实数
最近的整数,记作
,即
.在此基础上给出下列关于函数
的四个命题:
①
的定义域是R,值域是[0,
];
②
的图像关于直线
对称;③函数
是周期函数,最小正周期是1;
④ 函数
在
上是增函数;则其中真命题是__ .
14.若函数f (x) = 4x3-ax+3的单调递减区间是
,则实数a的值为
.
13.已知函数f(x)=
若f(a)=
.则a的值为__________.
12.函数
的图象恒过定点A,若点A在直线
上,其中
,则
的最小值为 .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com