3.4函数的应用(Ⅱ)(2)
教学目标:了解指数函数,对数函数等函数模型的应用
教学重点:了解指数函数,对数函数等函数模型的应用
教学过程:
3、建议例2选讲
课堂练习:略
小结:了解指数函数,对数函数等函数模型的应用
课后作业:教材第125页 习题3-4A:3、4、5
2、通过例4讲解函数图像的应用价值,可补充练习:
练习题:
(1)某企业近几年的年产值如图,则年增长率最高的是(增长率=增长值/原产值)
A)97年 B)98年
C)99年 D)00年
(2)A、B两家电器公司在今年1-5月份的销售量如图所示,则B相对于A其市场份额比例比较大的月份是
A)2 月 B)3月 C)4月 D)5 月
1、通过例1、例3讲解复利公式的应用,可补充练习:
练习题:某企业现生产的甲种产品使企业1999年盈利a万元,预计从2000年起,20年内甲种产品盈利每年比上一年减少 ,同时开发乙种产品2000年投放市场,乙种产品第一年盈利b万元,在今后20年内,每年盈利都比上一年增加 ,若 ,问该企业今后20年内,哪一年盈利最少是多少万元。
3.4函数的应用(Ⅱ)(1)
教学目标:了解指数函数,对数函数等函数模型的应用
教学重点:了解指数函数,对数函数等函数模型的应用
教学过程:
4、提问思考。根据以上规律、如何迅速画出幂函数的图象草图呢?应先画函数图象在第一象限内的部分。要先从右端入手,根据n的值,确定“入场”区域(分三区:n<0,0<n<1,n>1=对号入场,注意纽交点两侧情况。再根据定义域,奇偶性确定它在第二、第三象限有无图象,若有,由对称性就可以画出了。
课堂练习:教材第118页 练习题3-3A、3-3B
小结:了解幂函数的概念
课后作业:略
3.除教材上给出的性质外还可补充:
(1)幂函数图象在第一、二、三象限分别相交于点(1,1),(-1,1),(-1,-1),第四象限无图象。
(2)在第一象限,直线 把第一象限分割成四片区域。两块正方形(或开放正方形)区域(图二),两块矩形区域(图三)。
当n>0时,图象在两片正方形区域内通过;当n<O时、图象在两片矩形区域内通过。
(3)图象形状:当n>0(n≠1)时,图象为抛物线型,n<O时图象为双曲线型,当n=0或1时,图象为直线型。
(4)n由小往大的变化规律如图四,从-∞ O 1(左拐90°) +∞。
2、 本节课只研究 为有理数的情形
图1
令 ,其中 且 ,就 , , 时
分别取奇数、偶数,偶数、奇数,奇数、奇数共九种情形进行分类。
选取以上的图形作为各类的代表
1、 概念:形如 ( ),的函数叫做幂函数
3.3幂函数
教学目标:了解幂函数的概念
教学重点:了解幂函数的概念
教学过程:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com