3.设
是夹角为
的单位向量,若
是单位向量,则
的取值范围是_ ▲__
2.设复数
,则
等于_ _▲____.
1. 设集合
,若
,则
与
的关系是_ _▲___ (填
、
、
、
)
090](1)解:把A(
,0),C(3,
)代入抛物线
得
················································································· 1分
整理得
··············· ………………
2分 解得
………………3分
∴抛物线的解析式为
··································································· 4分
(2)令
解得 ![]()
∴ B点坐标为(4,0)
又∵D点坐标为(0,
) ∴AB∥CD ∴四边形ABCD是梯形.
∴S梯形ABCD =
···························· 5分
设直线
与x轴的交点为H,
与CD的交点为T,
则H(
,0), T(
,
)··················· 6分
∵直线
将四边形ABCD面积二等分
∴S梯形AHTD =
S梯形ABCD=4
∴
····································· 7分
∴
···························································· 8分
(3)∵MG⊥
轴于点G,线段MG︰AG=1︰2
∴设M(m,
),········································ 9分
∵点M在抛物线上 ∴
解得
(舍去) ···························· 10分
∴M点坐标为(3,
)····················································································· 11分
根据中心对称图形性质知,MQ∥AF,MQ=AF,NQ=EF,
∴N点坐标为(1,
) ···················································································· 12分
089]解:(1)
圆心
在坐标原点,圆
的半径为1,
点
的坐标分别为![]()
抛物线与直线
交于点
,且
分别与圆
相切于点
和点
,
![]()
.······························································································· 2分
点
在抛物线上,将
的坐标代入
,得:
解之,得:![]()
抛物线的解析式为:
.······································································ 4分
(2)![]()
抛物线的对称轴为
,
![]()
.···················· 6分
连结
,
,
,
又
,
,
.····································································· 8分
(3)点
在抛物线上.································································································ 9分
设过
点的直线为:
,
将点
的坐标代入
,得:
,
直线
为:
.······················································································ 10分
过点
作圆
的切线
与
轴平行,
点的纵坐标为
,
将
代入
,得:
.
![]()
点的坐标为
,··························································································· 11分
当
时,
,
所以,
点在抛物线
上.···································································· 12分
说明:解答题各小题中只给出了1种解法,其它解法只要步骤合理、解答正确均应得到相应的分数.
088]解:(1)法一:由图象可知:抛物线经过原点,
设抛物线解析式为
.
把
,
代入上式得:···················································································· 1分
解得
······················································································· 3分
∴所求抛物线解析式为
········································································ 4分
法二:∵
,
,
∴抛物线的对称轴是直线
.
设抛物线解析式为
(
)······························································ 1分
把
,
代入得
解得
··········································································· 3分
∴所求抛物线解析式为
.····························································· 4分
(2)分三种情况:
①当
,重叠部分的面积是
,过点
作
轴于点
,
∵
,在
中,
,
,
在
中,
,
,
∴
,
∴
.··············································· 6分
②当
,设
交
于点
,作
轴于点
,
,则四边形
是等腰梯形,
重叠部分的面积是
.
∴
,
∴
.··········· 8分
③当
,设
与
交于点
,交
于点
,重叠部分的面积是
.
因为
和
都是等腰直角三角形,所以重叠部分的面积是![]()
.
∵
,
,
∴
,
∴
,
∴![]()
.················································ 10分
(3)存在
···································································································· 12分
··································································································· 14分
087](天门)略
086]⑴证明:∵BC是⊙O的直径
∴∠BAC=90o
又∵EM⊥BC,BM平分∠ABC,
∴AM=ME,∠AMN=EMN
又∵MN=MN,
∴△ANM≌△ENM
⑵∵AB2=AF·AC
∴![]()
又∵∠BAC=∠FAB=90o
∴△ABF∽△ACB
∴∠ABF=∠C
又∵∠FBC=∠ABC+∠FBA=90o
∴FB是⊙O的切线
⑶由⑴得AN=EN,AM=EM,∠AMN=EMN,
又∵AN∥ME,∴∠ANM=∠EMN,
∴∠AMN=∠ANM,∴AN=AM,
∴AM=ME=EN=AN
∴四边形AMEN是菱形
∵cos∠ABD=
,∠ADB=90o
∴![]()
设BD=3x,则AB=5x,,由勾股定理![]()
而AD=12,∴x=3
∴BD=9,AB=15
∵MB平分∠AME,∴BE=AB=15
∴DE=BE-BD=6
∵ND∥ME,∴∠BND=∠BME,又∵∠NBD=∠MBE
∴△BND∽△BME,则![]()
设ME=x,则ND=12-x,
,解得x=![]()
∴S=ME·DE=
×6=45
085]解: (1)由题知:
……………………………………1 分
解得:
……………………………………………………………2分
∴ 所求抛物线解析式为:
……………………………3分
(2) 存在符合条件的点P, 其坐标为P (-1,
)或P(-1,-
)
或P (-1, 6) 或P (-1,
)………………………………………………………7分
(3)解法①:
过点E 作EF⊥x 轴于点F , 设E ( a ,-
-2a+3 )( -3< a < 0 )
∴EF=-
-2a+3,BF=a+3,OF=-a ………………………………………………8
分
∴S四边形BOCE
=
BF·EF +
(OC +EF)·OF
=
( a+3 )·(-
-2a+3) +
(-
-2a+6)·(-a)……………………………9 分
=
………………………………………………………………………10 分
=-![]()
+
∴ 当a =-
时,S四边形BOCE 最大, 且最大值为
.……………………………11
分
此时,点E 坐标为 (-
,
)……………………………………………………12分
解法②:
过点E 作EF⊥x 轴于点F, 设E ( x , y ) ( -3< x < 0 ) …………………………8分
则S四边形BOCE
=
(3 + y )·(-x) +
( 3 + x )·y ………………………………………9分
=
( y-x)=
(
) …………………………………10
分
= -![]()
+
∴ 当x =-
时,S四边形BOCE 最大,且最大值为
. …………………………11分
此时,点E 坐标为 (-
,
) ……………………………………………………12分
084]解:(1)⊙P与x轴相切.
∵直线y=-2x-8与x轴交于A(4,0),与y轴交于B(0,-8),
∴OA=4,OB=8.由题意,OP=-k,∴PB=PA=8+k.
在Rt△AOP中,k2+42=(8+k)2,
∴k=-3,∴OP等于⊙P的半径,
∴⊙P与x轴相切.
(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P在线段OB上时,作PE⊥CD于E.
∵△PCD为正三角形,∴DE=
CD=
,PD=3,
∴PE=
.
∵∠AOB=∠PEB=90°, ∠ABO=∠PBE,
∴△AOB∽△PEB,
∴![]()
,
∴
∴
,
∴
,∴
.
当圆心P在线段OB延长线上时,同理可得P(0,-
-8),
∴k=-
-8,∴当k=
-8或k=-
-8时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com