0  257378  257386  257392  257396  257402  257404  257408  257414  257416  257422  257428  257432  257434  257438  257444  257446  257452  257456  257458  257462  257464  257468  257470  257472  257473  257474  257476  257477  257478  257480  257482  257486  257488  257492  257494  257498  257504  257506  257512  257516  257518  257522  257528  257534  257536  257542  257546  257548  257554  257558  257564  257572  447090 

3.设是夹角为的单位向量,若是单位向量,则的取值范围是_ ▲__

试题详情

2.设复数,则等于_ _▲____

试题详情

1. 设集合,若,则的关系是_ _▲___ (填)

试题详情

090](1)解:把A(,0),C(3,)代入抛物线  得

    ················································································· 1分

  整理得  ···············  ……………… 2分   解得………………3分

  ∴抛物线的解析式为 ··································································· 4分

  (2)令   解得

  ∴ B点坐标为(4,0)

  又∵D点坐标为(0,) ∴ABCD  ∴四边形ABCD是梯形.

  ∴S梯形ABCD ···························· 5分

设直线x轴的交点为H

CD的交点为T

H(,0),  T()··················· 6分

∵直线将四边形ABCD面积二等分

∴S梯形AHTD S梯形ABCD=4

····································· 7分 

···························································· 8分

(3)∵MG轴于点G,线段MGAG=1︰2

   ∴设M(m),········································ 9分 

∵点M在抛物线上   ∴ 

解得(舍去) ···························· 10分

M点坐标为(3,)····················································································· 11分

根据中心对称图形性质知,MQAFMQAFNQEF

N点坐标为(1,) ···················································································· 12分

试题详情

089]解:(1)圆心在坐标原点,圆的半径为1,

的坐标分别为

抛物线与直线交于点,且分别与圆相切于点和点

.······························································································· 2分

在抛物线上,将的坐标代入

,得:  解之,得:

抛物线的解析式为:.······································································ 4分

(2)

抛物线的对称轴为

.···················· 6分

连结

.····································································· 8分

(3)点在抛物线上.································································································ 9分

设过点的直线为:

将点的坐标代入,得:

直线为:.······················································································ 10分

过点作圆的切线轴平行,点的纵坐标为

代入,得:

点的坐标为,··························································································· 11分

时,

所以,点在抛物线上.···································································· 12分

说明:解答题各小题中只给出了1种解法,其它解法只要步骤合理、解答正确均应得到相应的分数.

试题详情

088]解:(1)法一:由图象可知:抛物线经过原点,

设抛物线解析式为

代入上式得:···················································································· 1分

解得······················································································· 3分

∴所求抛物线解析式为········································································ 4分

法二:∵

∴抛物线的对称轴是直线

设抛物线解析式为()······························································ 1分

代入得

   解得··········································································· 3分

∴所求抛物线解析式为.····························································· 4分

(2)分三种情况:

①当,重叠部分的面积是,过点轴于点

,在中,

中,

.··············································· 6分

②当,设于点,作轴于点

,则四边形是等腰梯形,

重叠部分的面积是

.··········· 8分

③当,设交于点,交于点,重叠部分的面积是

因为都是等腰直角三角形,所以重叠部分的面积是

  .················································ 10分

(3)存在   ···································································································· 12分

       ··································································································· 14分

试题详情

087](天门)略

试题详情

086]⑴证明:∵BC是⊙O的直径

∴∠BAC=90o

又∵EM⊥BC,BM平分∠ABC,

∴AM=ME,∠AMN=EMN

又∵MN=MN,

∴△ANM≌△ENM

⑵∵AB2=AF·AC

又∵∠BAC=∠FAB=90o

∴△ABF∽△ACB

∴∠ABF=∠C

又∵∠FBC=∠ABC+∠FBA=90o

∴FB是⊙O的切线

⑶由⑴得AN=EN,AM=EM,∠AMN=EMN,

又∵AN∥ME,∴∠ANM=∠EMN,

∴∠AMN=∠ANM,∴AN=AM,

∴AM=ME=EN=AN

∴四边形AMEN是菱形

∵cos∠ABD=,∠ADB=90o

设BD=3x,则AB=5x,,由勾股定理

而AD=12,∴x=3

∴BD=9,AB=15

∵MB平分∠AME,∴BE=AB=15

∴DE=BE-BD=6

∵ND∥ME,∴∠BND=∠BME,又∵∠NBD=∠MBE

∴△BND∽△BME,则

设ME=x,则ND=12-x,,解得x=

∴S=ME·DE=×6=45

试题详情

085]解: (1)由题知: ……………………………………1 分  

 解得: ……………………………………………………………2分

∴ 所求抛物线解析式为: ……………………………3分

(2) 存在符合条件的点P, 其坐标为P (-1, )或P(-1,- )

或P (-1, 6)  或P (-1, )………………………………………………………7分

(3)解法①:

过点EEFx 轴于点F , 设E ( a ,--2a+3 )( -3< a < 0 )

EF=--2a+3,BF=a+3,OF=-a ………………………………………………8 分

S四边形BOCE = BF·EF + (OC +EFOF 

=( a+3 )·(--2a+3) + (--2a+6)·(-a)……………………………9 分

=………………………………………………………………………10 分

=-+

∴ 当a =-时,S四边形BOCE 最大, 且最大值为 .……………………………11 分 

此时,点E 坐标为 (-)……………………………………………………12分

解法②:

过点EEFx 轴于点F, 设E ( x ,  y ) ( -3< x < 0 ) …………………………8分

S四边形BOCE = (3 + y )·(-x) +  ( 3 + xy ………………………………………9分

       = ( yx)= ( )  …………………………………10 分

       = - +  

∴ 当x =-时,S四边形BOCE 最大,且最大值为 . …………………………11分

此时,点E 坐标为 (-) ……………………………………………………12分

试题详情

084]解:(1)⊙Px轴相切.

    ∵直线y=-2x-8与x轴交于A(4,0),与y轴交于B(0,-8),

OA=4,OB=8.由题意,OP=-k,∴PB=PA=8+k.

在Rt△AOP中,k2+42=(8+k)2

k=-3,∴OP等于⊙P的半径,

∴⊙Px轴相切.

(2)设⊙P与直线l交于CD两点,连结PCPD当圆心P在线段OB上时,作PECDE.

∵△PCD为正三角形,∴DE=CD=PD=3,

 ∴PE=.

∵∠AOB=∠PEB=90°, ∠ABO=∠PBE

∴△AOB∽△PEB

,∴.

当圆心P在线段OB延长线上时,同理可得P(0,--8),

k=--8,∴当k=-8或k=--8时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.

试题详情


同步练习册答案