083]. 解:(1)B(1,
)
(2)设抛物线的解析式为y=ax(x+a),代入点B(1,
),得
,
因此![]()
(3)如图,抛物线的对称轴是直线x=-1,当点C位于对称轴与线段AB的交点时,△BOC的周长最小.
设直线AB为y=kx+b.所以
,
因此直线AB为
,
当x=-1时,
,
因此点C的坐标为(-1,
).
(4)如图,过P作y轴的平行线交AB于D.
![]()
当x=-
时,△PAB的面积的最大值为
,此时
.
082](09上海)略
081]解:(1)(0,-3),b=-
,c=-3.···························································· 3分
(2)由(1),得y=
x2-
x-3,它与x轴交于A,B两点,得B(4,0).
∴OB=4,又∵OC=3,∴BC=5.
由题意,得△BHP∽△BOC,
∵OC∶OB∶BC=3∶4∶5,
∴HP∶HB∶BP=3∶4∶5,
∵PB=5t,∴HB=4t,HP=3t.
∴OH=OB-HB=4-4t.
由y=
x-3与x轴交于点Q,得Q(4t,0).
∴OQ=4t.··························································································· 4分
①当H在Q、B之间时,
QH=OH-OQ
=(4-4t)-4t=4-8t.································································ 5分
②当H在O、Q之间时,
QH=OQ-OH
=4t-(4-4t)=8t-4.································································ 6分
综合①,②得QH=|4-8t|;································································ 6分
(3)存在t的值,使以P、H、Q为顶点的三角形与△COQ相似.···················· 7分
①当H在Q、B之间时,QH=4-8t,
若△QHP∽△COQ,则QH∶CO=HP∶OQ,得
=
,
∴t=
.···························································································· 7分
若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得
=
,
即t2+2t-1=0.
∴t1=
-1,t2=-
-1(舍去).················································· 8分
②当H在O、Q之间时,QH=8t-4.
若△QHP∽△COQ,则QH∶CO=HP∶OQ,得
=
,
∴t=
.···························································································· 9分
若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得
=
,
即t2-2t+1=0.
∴t1=t2=1(舍去).·········································································· 10分
综上所述,存在
的值,t1=
-1,t2=
,t3=
.························ 10分
附加题:解:(1)8;···································································································· 5分
(2)2.·································································································· 10分
090]如图(9)-1,抛物线
经过A(
,0),C(3,
)两点,与
轴交于点D,与
轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线
将四边形ABCD面积二等分,求
的值;
(3)如图(9)-2,过点E(1,1)作EF⊥
轴于点F,将△AEF绕平面内某点旋转180°得△MNQ(点M、N、Q分别与点A、E、F对应),使点M、N在抛物线上,作MG⊥
轴于点G,若线段MG︰AG=1︰2,求点M,N的坐标.
089]如图,在平面直角坐标系
中,半径为1的圆的圆心
在坐标原点,且与两坐标轴分别交于
四点.抛物线
与
轴交于点
,与直线
交于点
,且
分别与圆
相切于点
和点
.
(1)求抛物线的解析式;
(2)抛物线的对称轴交
轴于点
,连结
,并延长
交圆
于
,求
的长.
(3)过点
作圆
的切线交
的延长线于点
,判断点
是否在抛物线上,说明理由.
088]如图所示,已知在直角梯形
中,
轴于点
.动点
从
点出发,沿
轴正方向以每秒1个单位长度的速度移动.过
点作
垂直于直线
,垂足为
.设
点移动的时间为
秒(
),
与直角梯形
重叠部分的面积为
.
(1)求经过
三点的抛物线解析式;
(2)求
与
的函数关系式;
(3)将
绕着点
顺时针旋转
,是否存在
,使得
的顶点
或
在抛物线上?若存在,直接写出
的值;若不存在,请说明理由.
087]如图,已知抛物线y=x2+bx+c经过矩形ABCD的两个顶点A、B,AB平行于x轴,对角线BD与抛物线交于点P,点A的坐标为(0,2),AB=4.
(1)求抛物线的解析式;
(2)若S△APO=
,求矩形ABCD的面积.
086]如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分
∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF·AC,cos∠ABD=
,AD=12.
⑴求证:△ANM≌△ENM;
⑵求证:FB是⊙O的切线;
⑶证明四边形AMEN是菱形,并求该菱形的面积S.
085]如图①, 已知抛物线
(a≠0)与
轴交于点A(1,0)和点B (-3,0),与y轴交于点C.
(1) 求抛物线的解析式;
(2) 设抛物线的对称轴与
轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
![]()
084]如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.
(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;
(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com