0  257377  257385  257391  257395  257401  257403  257407  257413  257415  257421  257427  257431  257433  257437  257443  257445  257451  257455  257457  257461  257463  257467  257469  257471  257472  257473  257475  257476  257477  257479  257481  257485  257487  257491  257493  257497  257503  257505  257511  257515  257517  257521  257527  257533  257535  257541  257545  257547  257553  257557  257563  257571  447090 

083]. 解:(1)B(1,)

(2)设抛物线的解析式为y=ax(x+a),代入点B(1, ),得

因此

(3)如图,抛物线的对称轴是直线x=-1,当点C位于对称轴与线段AB的交点时,△BOC的周长最小.

设直线ABy=kx+b.所以

因此直线AB

x=-1时,

因此点C的坐标为(-1,).

(4)如图,过Py轴的平行线交ABD.

     

x=-时,△PAB的面积的最大值为,此时.

试题详情

082](09上海)略

试题详情

081]解:(1)(0,-3),b=-c=-3.···························································· 3分

(2)由(1),得yx2x-3,它与x轴交于AB两点,得B(4,0).

OB=4,又∵OC=3,∴BC=5.

由题意,得△BHP∽△BOC

OCOBBC=3∶4∶5,

HPHBBP=3∶4∶5,

PB=5t,∴HB=4tHP=3t

OHOBHB=4-4t

yx-3与x轴交于点Q,得Q(4t,0).

OQ=4t.··························································································· 4分

①当HQB之间时,

QHOHOQ

=(4-4t)-4t=4-8t.································································ 5分

②当HOQ之间时,

QHOQOH

=4t-(4-4t)=8t-4.································································ 6分

综合①,②得QH=|4-8t|;································································ 6分

(3)存在t的值,使以PHQ为顶点的三角形与△COQ相似.···················· 7分

①当HQB之间时,QH=4-8t

若△QHP∽△COQ,则QHCOHPOQ,得

t.···························································································· 7分

若△PHQ∽△COQ,则PHCOHQOQ,得

t2+2t-1=0.

t1-1,t2=--1(舍去).················································· 8分

②当HOQ之间时,QH=8t-4.

若△QHP∽△COQ,则QHCOHPOQ,得

t.···························································································· 9分

若△PHQ∽△COQ,则PHCOHQOQ,得

t2-2t+1=0.

t1t2=1(舍去).·········································································· 10分

综上所述,存在的值,t1-1,t2t3.························ 10分

附加题:解:(1)8;···································································································· 5分

(2)2.·································································································· 10分

试题详情

090]如图(9)-1,抛物线经过A(,0),C(3,)两点,与轴交于点D,与轴交于另一点B

(1)求此抛物线的解析式;

(2)若直线将四边形ABCD面积二等分,求的值;

(3)如图(9)-2,过点E(1,1)作EF轴于点F,将△AEF绕平面内某点旋转180°得△MNQ(点MNQ分别与点AEF对应),使点MN在抛物线上,作MG轴于点G,若线段MGAG=1︰2,求点MN的坐标.

 

试题详情

089]如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点.抛物线轴交于点,与直线交于点,且分别与圆相切于点和点

(1)求抛物线的解析式;

(2)抛物线的对称轴交轴于点,连结,并延长交圆,求的长.

(3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.

 

试题详情

088]如图所示,已知在直角梯形中,轴于点.动点点出发,沿轴正方向以每秒1个单位长度的速度移动.过点作垂直于直线,垂足为.设点移动的时间为秒(),与直角梯形重叠部分的面积为

(1)求经过三点的抛物线解析式;

(2)求的函数关系式;

(3)将绕着点顺时针旋转,是否存在,使得的顶点在抛物线上?若存在,直接写出的值;若不存在,请说明理由.

 

试题详情

087]如图,已知抛物线yx2+bx+c经过矩形ABCD的两个顶点ABAB平行于x轴,对角线BD与抛物线交于点P,点A的坐标为(02)AB4

(1)求抛物线的解析式;

(2)SAPO,求矩形ABCD的面积.

 

试题详情

086]如图,以BC为直径的⊙O交△CFB的边CF于点A,BM平分

∠ABC交AC于点M,AD⊥BC于点D,AD交BM于点N,ME⊥BC于点E,AB2=AF·AC,cos∠ABD=,AD=12.

⑴求证:△ANM≌△ENM;

⑵求证:FB是⊙O的切线;

⑶证明四边形AMEN是菱形,并求该菱形的面积S.

试题详情

085]如图①, 已知抛物线(a≠0)与轴交于点A(1,0)和点B (-3,0),与y轴交于点C

(1) 求抛物线的解析式;

(2) 设抛物线的对称轴与轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

(3) 如图②,若点E为第二象限抛物线上一动点,连接BECE,求四边形BOCE面积的最大值,并求此时E点的坐标.

试题详情

084]如图,在平面直角坐标系中,直线ly=-2x-8分别与x轴,y轴相交于AB两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P.

(1)连结PA,若PA=PB,试判断⊙Px轴的位置关系,并说明理由;

(2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形?

                    

试题详情


同步练习册答案