0  295473  295481  295487  295491  295497  295499  295503  295509  295511  295517  295523  295527  295529  295533  295539  295541  295547  295551  295553  295557  295559  295563  295565  295567  295568  295569  295571  295572  295573  295575  295577  295581  295583  295587  295589  295593  295599  295601  295607  295611  295613  295617  295623  295629  295631  295637  295641  295643  295649  295653  295659  295667  447090 

5.C.f(x)= -x2+2ax 对称轴为在[1,2]上是减函数  ∴a≤1

在[1,2]上减函数,则a>0

∴0<a≤1

试题详情

4.D.令

    ∴

      ∴ah(m)+bg(m)=3

   

=-ah(m)-bg(m)+2

=-1

试题详情

3.C.x2=1  ∴x=±1;  x2=4  ∴x=±2

定义域中只有两个元素数组有(1,2)(-1,2), (1,-2)(-1,-2)

定义域中有三个元素的数组有(1,-1,2)(-1,-1,-2), (1,2,-2), (-1,2,2)

定义域中有四个元素有(1,-1,2,-2)

∴共9个

试题详情

2.C.y=log2x, ∴x=2y  ∴f-1(x)=2x  ∴, x=0, f-1(1-x)=2

    x=1, f-1(1-x)=1,用特殊值即可知选C。

试题详情

1.A.f(2+t)=f(2-t),  ∴y=f(x)关于x=2对称,根据对称性可得。

试题详情

10.某种商品定价为每件60元,不加收附加税时每年大约销售80万件,若政府征收附加税,每销售100元要征税p元(即税率为p%),因此每年销售量将减少万件。

   (1)将政府每年对该商品征收的总税金y(万元),表示成P的函数、并指出这个函数的定义域。

   (2)要使政府在此项经营中每年收取的税金不少于128万元,问税率p%应怎样确定?

   (2)在所收税金不少于128万元的前提下,要让厂家获得最大的销售金额,则应如何确定p值。

函数图象性质(一)答案

试题详情

9.已知关于x的方程:9x+a·3x+a+1=0有两个不等实根,求实数a的值。

试题详情

8.的单调递增区间是                

试题详情

7.函数y=lg(x2+2x+a)定义域为R,实数a取值范围是             值域为R,实数a的取值范围是         

试题详情

6.的图象关于点(4,-1)对称,则函数a=               

试题详情


同步练习册答案