0  311144  311152  311158  311162  311168  311170  311174  311180  311182  311188  311194  311198  311200  311204  311210  311212  311218  311222  311224  311228  311230  311234  311236  311238  311239  311240  311242  311243  311244  311246  311248  311252  311254  311258  311260  311264  311270  311272  311278  311282  311284  311288  311294  311300  311302  311308  311312  311314  311320  311324  311330  311338  447090 

6.  在棱长为2的正方体中,O是底面ABCD的中心,E、F分别是、AD的中点,那么异面直线OE和所成的角的余弦值等于                             (          )

    A.         B.           C.          D.

试题详情

5.棱长都为2的直平行六面体ABCD-A1B1C1D1中,∠BAD=60°,则对角线A1C与侧面DCC1D1所成角的正弦值为                        (               )

    A.          B.       C.          D.

试题详情

4.  设EF是正方体AC1的棱ABD1C1的中点,在正方体的12条面对角线中,与截面A1ECF成60°角的对角线的数目是                                  (               )

A.0                B.2          C.4           D.6

试题详情

3.正方体ABCD-A1B1C1D1中,E、F分别是AA1与CC1的中点,则直线ED与D1F所成角的大小是            (   )

A.               B。            C。            D。

试题详情

2.在正三棱柱ABC-A1B1C1中,若AB=BB1,则AB1与C1B所成的角的大小为         

A.60º                               B. 90º                       C.105º                      D. 75º

试题详情

1.在正三棱柱ABC-A1B1C1中,若AB=2,A A1=1,则点A到平面A1BC的距离为(   )

    A.          B.          C.         D.

试题详情

5.设平面α的一个法向量为,点P是平面α外一点,且Po∈α,则点P到平面α的距离是d.

第2课时  空间向量的坐标运算

基础过关
 

ab

(1) a±b        

(2) a        

(3) a·b     

(4) ab       ab    

(5) 设

              

AB的中点M的坐标为         

典型例题
 
 

例1. 若=(1,5,-1),=(-2,3,5)

(1)若(k+)∥(-3),求实数k的值;

(2)若(k+)⊥(-3),求实数k的值;

(3)若取得最小值,求实数k的值.

解:(1)

(2);   (3)

变式训练1. 已知为原点,向量,求

解:设

,∴

,即

解此方程组,得

    ∴

例2. 如图,直三棱柱,底面中,CA=CB=1,,棱,M、N分别A1B1、A1A是的中点.

(1) 求BM的长; 

(2) 求的值; 

(3) 求证:

解:以C为原点建立空间直角坐标系.

(1) 依题意得B(0,1,0),M(1,0,1)..

(2) 依题意得A1(1,0,2),B(0,1,0),C(0,0,0),B1(0,1,2).

.

(3) 证明:依题意得C1(0,0,2),N.

变式训练2. 在四棱锥P-ABCD中, 底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=,BC=1,PA=2,E为PD的中点.

(1) 在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离;

(2) 求(1) 中的点N到平面PAC的距离.

 

解:(1) 建立空间直角坐标系A-BDP,则A、B、C、D、P、E的坐标分别是A(0, 0, 0)、B(, 0, 0)、C(, 1, 0)、D(0, 1, 0)、P(0, 0, 2)、E(0, , 1),依题设N(x, 0, z),则=(-x, , 1-z),由于NE⊥平面PAC,

,即点N的坐标为(, 0, 1),

从而N到AB、AP的距离分别为1,.

(2) 设N到平面PAC的距离为d,则d

.

例3. 如图,在底面是棱形的四棱锥中,,点E上,且:=2:1.

(1) 证明 平面

(2) 求以AC为棱,为面的二面角的大小;

(3) 在棱PC上是否存在一点F,使∥平面?证明你的结论.

解:(1)证明略;

(2)易解得

(3)解  以A为坐标原点,直线分别为y轴、z轴,过A点垂直于平面PAD的直线为x轴,建立空间直角坐标系(如图).由题设条件,相关各点的坐标为

所以

,设点F是棱上的点,,其中,则.令

解得,即时,.亦即,F是PC的中点时,共面,又平面,所以当F是PC的中点时,∥平面

例4. 如图,多面体是由底面为ABCD的长方体被截面AEFG所截而得,其中AB=4,BC=1,BE=3,CF=4.

(1) 求和点G的坐标;

(2) 求GE与平面ABCD所成的角;

(3) 求点C到截面AEFG的距离.

解:(1) 由图可知:A(1,0,0),B(1,4,0),

E(1,4,3),F(0,4,4)  ∴

又∵,设G(0,0,z),则(-1,0,z)

=(-1,0,1)  ∴z=1  ∴G(0,0,1)

(2)平面ABCD的法向量

,设GE与平面ABCD成角为,则

(3)设⊥面AEFG,=(x0y0z0)

,而=(-1,0,1),=(0,4,3)

z0=4,则=(4,-3,4)

即点C到截面AEFG的距离为

变式训练4. 如图四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为GGAD上,且PG=4,BGGCGBGC=2,EBC的中点.

    (1)求异面直线GEPC所成的角的余弦值;

    (2)求点D到平面PBG的距离;

    (3)若F点是棱PC上一点,且DFGC,求的值.

解:(1)以G点为原点,x轴、y轴、

z轴建立空间直角坐标系,则B(2,0,0),C(0,2,0),

P(0,0,4),故E(1,1,0),=(1,1,0), =(0,2,4)。

GEPC所成的余弦值为

 (2)平面PBG的单位法向量n=(0,±1,0) .

∴点D到平面PBG的距离为n |=.

 (3)设F(0,yz),则

,∴

, 又,即(0,z-4)=λ(0,2,-4),  ∴z=1,

小结归纳
 
F(0,,1)  ,,∴

对于以下几类立体几何问题:(1) 共线与共面问题;(2) 平行与垂直问题;(3) 夹角问题;(4) 距离问题;(5) 探索性问题.

运用向量来解决它们有时会体现出一定的优势.用空间向量解题的关键步骤是把所求向量用某个合适的基底表示,本节主要是用单位正交基底表示,就是适当地建立起空间直角坐标系,把向量用坐标表示,然后进行向量与向量的坐标运算,最后通过向量在数量上的关系反映出向量的空间位置关系,从而使问题得到解决.在寻求向量间的数量关系时,一个基本的思路是列方程,解方程.

空间向量章节测试题

试题详情

4.异面直线间的距离的向量求法:已知异面直线l1l2,AB为其公垂线段,C、D分别为l1l2上的任意一点,为与共线的向量,则||=.

试题详情

3.利用向量求夹角(线线夹角、线面夹角、面面夹角)有时也很方便.其一般方法是将所求的角转化为求两个向量的夹角,而求两个向量的夹角则可以利用公式cosθ=. 

试题详情

2.运用向量求解距离问题,其一般方法是找出代表相应距离的线段所对向量,然后计算这个向量对应的模.而计算过程中只要运用好加法法则,就总能利用一个一个的向量三角形,将所求向量用有模和夹角的已知向量表示出来,从而求得结果.

试题详情


同步练习册答案