9.如图①、②、③中,点E、D分别是正△ABC、正四边形ABCM、正五
边形ABCMN中以C点为顶点的相邻两边上的点,且BE = CD,DB交AE于P点。
⑴求图①中,∠APD的度数;
⑵图②中,∠APD的度数为___________,图③中,∠APD的度数为___________;
⑶根据前面探索,你能否将本题推广到一般的正n 边形情况.若能,写出推广问题和结论;若不能,请说明理由。
![]()
B 组
8.如图,ΔABC的∠C=Rt∠,BC=4,AC=3,两个外切的等圆⊙O1,⊙O2各与AB,AC,BC相切于F,H,E,G,求两圆的半径。
7.如图,半径为2的正三角形ABC的中心为O,过O与两个顶点画弧,求这三条弧所围成的阴影部分的面积。
6.如图,已知扇形OACB中,∠AOB=120°,弧AB长为L=4π,⊙O′和弧AB、OA、OB分别相切于点C、D、E,求⊙O的周长。
5.
如图⊿ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线。
4.如图,ABCD是⊙O的内接四边形,DP∥AC,交BA的延长线于P,求证:AD·DC=PA·BC。
3.已知:如图20,在△ABC中,∠BAC=120°,AB=AC,BC=4
,以A为圆心,2为半径作⊙A,试问:直线BC与⊙A的关系如何?并证明你的结论。
![]()
2.
如图,⊙O1的圆心在⊙O的圆周上,⊙O和⊙O1交于A,B,AC切⊙O于A,连结CB,BD是⊙O的直径,∠D=40°求:∠A O1B、∠ACB和∠CAD的度数。
1.如图,P是⊙O外一点,PAB、PCD分别与⊙O相交于A、B、C、D。
(1)PO平分∠BPD; (2)AB=CD;(3)OE⊥CD,OF⊥AB;(4)OE=OF。
从中选出两个作为条件,另两个作为结论组成一个真命题,并加以证明。
![]()
10.如图7,在矩形ABCD中,已知AB=8 cm,将矩形绕点A旋转90°,到达A′B′C′D′的位置,则在转过程 中,边CD扫过的(阴影部分)面积S=_________。
![]()
图6 图7
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com