1.积、商、幂的对数运算法则:
如果 a > 0,a ¹ 1,M > 0, N > 0 有:
![]()
证明:①设
M=p,
N=q. 由对数的定义可以得:M=
,N=
.
∴MN= ![]()
=
∴
MN=p+q,
即证得
MN=
M +
N.
②设
M=p,
N=q. 由对数的定义可以得M=
,N=
.
∴
∴![]()
即证得
.
③设
M=P
由对数定义可以得M=
,
∴
=
∴![]()
=np, 即证得![]()
=n
M.
说明:上述证明是运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式.
①简易语言表达:“积的对数 = 对数的和”……
②有时逆向运用公式:如
.
③真数的取值范围必须是
:
是不成立的.
是不成立的.
④对公式容易错误记忆,要特别注意:
,
.
4.指数运算法则 ![]()
![]()
3.重要公式:
⑴负数与零没有对数; ⑵
,![]()
![]()
⑶对数恒等式![]()
![]()
2.指数式与对数式的互化![]()
![]()
1.对数的定义
其中
与 ![]()
![]()
2.已知
求证:![]()
证明:由换底公式
由等比定理得:
![]()
∴
∴
.
1.证明:![]()
证法1: 设
,
,![]()
则:
∴
从而
![]()
∵
∴
即:
(获证)
证法2: 由换底公式 左边=
=右边
2.《习案》作业二十二.
以下为备用题:
换底公式及其推论
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com