0  399311  399319  399325  399329  399335  399337  399341  399347  399349  399355  399361  399365  399367  399371  399377  399379  399385  399389  399391  399395  399397  399401  399403  399405  399406  399407  399409  399410  399411  399413  399415  399419  399421  399425  399427  399431  399437  399439  399445  399449  399451  399455  399461  399467  399469  399475  399479  399481  399487  399491  399497  399505  447090 

9.关于x的方程sinx+cosx+a=0有实根,则实数a的取值范围是__________。

试题详情

8.已知等差数列的前n项和为S,且S=S  (p≠q,p、q∈N),则S=_________。

试题详情

7.已知sinθ+cosθ=,θ∈(,π),则tanθ的值是        (   )

A. -       B. -     C.      D. 

试题详情

6.已知函数y=f(x)有反函数,则方程f(x)=a  (a是常数)        (   )

A.有且仅有一个实根  B.至多一个实根   C.至少一个实根  D.不同于以上结论

试题详情

5.如果函数f(x)=x+bx+c对于任意实数t,都有f(2+t)=f(2-t),那么(   )

A. f(2)<f(1)<f(4)       B. f(1)<f(2)<f(4) 

C. f(2)<f(4)<f(1)       D. f(4)<f(2)<f(1)

试题详情

4.方程lgx+x=3的解所在的区间为                 (   )

A.  (0,1)    B.  (1,2)   C.  (2,3)   D.  (3,+∞)

试题详情

3.已知命题p:函数的值域为R,命题q:函数

   是减函数。若p或q为真命题,p且q为假命题,则实数a的取值范围是

    A.a≤1          B.a<2           C.1<a<2         D.a≤1或a≥2

试题详情

2.方程f(x,y)=0的曲线如图所示,那么方程f(2-x,y)=0的曲线是      (   )

   

试题详情

1.对函数作代换x=g(t),则总不改变f(x)值域的代换是   (   )    A.                  B.

    C.g(t)=(t-1)2                     D.g(t)=cost

试题详情

2.掌握研究函数的方法,提高研究函数问题的能力

高中数学对函数的研究理论性加强了,对一些典型问题的研究十分重视,如求函数的定义域,确定函数的解析式,判断函数的奇偶性,判断或证明函数在指定区间的单调性等,并形成了研究这些问题的初等方法,这些方法对分析问题能力,推理论证能力和综合运用数学知识能力的培养和发展是十分重要的.

函数、方程、不等式是相互联系的.对于函数f(x)与g(x),令f(x)=g(x),f(x)>g(x)或f(x)<g(x)则分别构成方程和不等式,因此对于某些方程、不等式的问题用函数观点认识是十分有益的;方程、不等式从另一个侧面为研究函数提供了工具.

例10.方程lgx+x=3的解所在区间为(   )

A.(0,1)      B.(1,2)

C.(2,3)      D.(3,+∞)

分析:在同一平面直角坐标系中,画出函数y=lgx与y=-x+3的图象(如图2).它们的交点横坐标,显然在区间(1,3)内,由此可排除A,D.至于选B还是选C,由于画图精确性的限制,单凭直观就比较困难了.实际上这是要比较与2的大小.当x=2时,lgx=lg2,3-x=1.由于lg2<1,因此>2,从而判定∈(2,3),故本题应选C.

说明:本题是通过构造函数用数形结合法求方程lgx+x=3解所在的区间.数形结合,要在结合方面下功夫.不仅要通过图象直观估计,而且还要计算的邻近两个函数值,通过比较其大小进行判断.

例11.(1)一次函数f(x)=kx+h(k≠0),若m<n有f(m)>0,f(n)>0,则对于任意x∈(m,n)都有f(x)>0,试证明之;

(2)试用上面结论证明下面的命题:

若a,b,c∈R且|a|<1,|b|<1,|c|<1,则ab+bc+ca>-1.

分析:问题(1)实质上是要证明,一次函数f(x)=kx+h(k≠0), x∈(m, n).若区间两个端点的函数值均为正,则对于任意x∈(m,n)都有f(x)>0.之所以具有上述性质是由于一次函数是单调的.因此本问题的证明要从函数单调性入手.

(1)证明:

当k>0时,函数f(x)=kx+h在x∈R上是增函数,m<x<n,f(x)>f(m)>0;

当k<0时,函数f(x)=kx+h在x∈R上是减函数,m<x<n,f(x)>f(n)>0.

所以对于任意x∈(m,n)都有f(x)>0成立.

(2)将ab+bc+ca+1写成(b+c)a+bc+1,构造函数f(x)=(b+c)x+bc+1.则

f(a)=(b+c)a+bc+1.

当b+c=0时,即b=-c,   f(a)=bc+1=-c2+1.

因为|c|<1,所以f(a)=-c2+1>0.

当b+c≠0时,f(x)=(b+c)x+bc+1为x的一次函数.

因为|b|<1,|c|<1,

f(1)=b+c+bc+1=(1+b)(1+c)>0,  f(-1)=-b-c+bc+1=(1-b)(1-c)>0.

由问题(1)对于|a|<1的一切值f(a)>0,即(b+c)a+bc+1=ab+ac+bc+1>0.

说明:问题(2)的关键在于“转化”“构造”.把证明ab+bc+ca>-1转化为证明ab+bc+ca+1>0, 由于式子ab+bc+ca+1中, a,b,c是对称的,构造函数f(x)=(b+c)x+bc+1,则f(a)=(b+c)a+bc+1,问题转化为在|a|<1,|b|<1,|c|<1的条件下证明f(a)>0.(也可构造 f(x)=(a+c)x+ac+1,证明f(b)>0)。

例12.定义在R上的单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y).

(1)求证f(x)为奇函数;

(2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.

分析:欲证f(x)为奇函数即要证对任意x都有f(-x)=-f(x)成立.在式子f(x+y)=f(x)+f(y)中,令y=-x可得f(0)=f(x)+f(-x)于是又提出新的问题,求f(0)的值.令x=y=0可得f(0)=f(0)+f(0)即f(0)=0,f(x)是奇函数得到证明.

(1)证明:f(x+y)=f(x)+f(y)(x,y∈R),       ①

令x=y=0,代入①式,得f(0+0)=f(0)+f(0),即 f(0)=0.

令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,则有

0=f(x)+f(-x).即f(-x)=-f(x)对任意x∈R成立,所以f(x)是奇函数.

(2)解:f(3)=log3>0,即f(3)>f(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数,又由(1)f(x)是奇函数.

f(k·3)<-f(3-9-2)=f(-3+9+2),  k·3<-3+9+2,

3-(1+k)·3+2>0对任意x∈R成立.

令t=3>0,问题等价于t-(1+k)t+2>0对任意t>0恒成立.

R恒成立.

说明:问题(2)的上述解法是根据函数的性质.f(x)是奇函数且在x∈R上是增函数,把问题转化成二次函数f(t)=t-(1+k)t+2对于任意t>0恒成立.对二次函数f(t)进行研究求解.本题还有更简捷的解法:

分离系数由k·3<-3+9+2得

上述解法是将k分离出来,然后用平均值定理求解,简捷、新颖.

试题详情


同步练习册答案