2. 近似计算的处理方法.
⑷如何来求
展开式中含
的系数呢?其中
且
把
视为二项式,先找出含有
的项
,另一方面在
中含有
的项为
,故在
中含
的项为
.其系数为
.
附:一般来说
为常数)在求系数最大的项或最小的项时均可直接根据性质二求解. 当
时,一般采用解不等式组
的系数或系数的绝对值)的办法来求解.
II. 当n是奇数时,中间项为两项,即第
项和第
项,它们的二项式系数
最大.
③系数和:
I. 当n是偶数时,中间项是第
项,它的二项式系数
最大;
展开式中的第
项为:
.
⑶二项式系数的性质.
①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;
②二项展开式的中间项二项式系数最大.
② 系数:依次为组合数![]()
③ 每一项的次数是一样的,即为n次,展开式依a的降幕排列,b的升幕排列展开.
⑵二项展开式的通项.
① 项数:共有
项;
1. ⑴二项式定理:
.
展开式具有以下特点:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com