2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)
推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.
[注]:一平面间的任一直线平行于另一平面.
1. 空间两个平面的位置关系:相交、平行.
5. ⑴垂线段和斜线段长定理:从平面外一点向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.
[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]
⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上
得不出
⊥
. 因为
⊥
,但
不垂直OA.
l 三垂线定理的逆定理亦成立.
直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)
直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.
推论:如果两条直线同垂直于一个平面,那么这两条直线平行.
[注]:①垂直于同一平面的两个平面平行.(×)(可能相交,垂直于同一条直线的两个平面平行)
②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)
③垂直于同一平面的两条直线平行.(√)
l
若
⊥
,
⊥
,得
⊥
(三垂线定理),
4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.
3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)
⑦直线
与平面
、
所成角相等,则
∥
.(×)(
、
可能相交)
③若直线
与平面
平行,则
内必存在无数条直线与
平行. (√)(不是任意一条直线,可利用平行的传递性证之)
④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)
⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)
⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)
②直线
与平面
内一条直线相交,则
与平面
相交. (×)(平面外一条直线)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com