当且仅当
时,cosθ=0,∴θ
。
(2)设![]()
∵
是共线向量,∴
,∴b=c,故
。
解:(1)∵
,∴
。
【例5】已知椭圆
的长、短轴端点分别为A、B,从此椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,向量
与
是共线向量。
(1)求椭圆的离心率e;
(2)设Q是椭圆上任意一点, F1、F2分别是左、右焦点,求∠F1QF2的取值范围;
XB=|BF|=|BN|=6.
设点P (x,y)是曲线段C上任一点,则由题意知P属于集合
{(x,y)|(x-xN)2+y2=x2,xA≤x≤xB,y>0}.
故曲线段C的方程
y2=8(x-2)(3≤x≤6,y>0).
第十七讲 圆锥曲线的定义、性质和方程(二)
=|ME|+
=4
xN=|AE|+|EN|=4.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com