2.二次函数的三种表示方式
[1]二次函数的三种表示方式:
(1).一般式: ;
(2).顶点式: ;
(3).交点式: .
说明:确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下三种形式:
①给出三点坐标可利用一般式来求;
②给出两点,且其中一点为顶点时可利用顶点式来求.
![]()
上述二次函数的性质可以分别通过上图直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题.
由于y=ax2+bx+c=a(x2+
)+c=a(x2+
+
)+c-![]()
,
所以,y=ax2+bx+c(a≠0)的图象可以看作是将函数y=ax2的图象作左右平移、上下平移得到的,
二次函数y=ax2+bx+c(a≠0)具有下列性质:
[1]当a>0时,函数y=ax2+bx+c图象开口方向 ;顶点坐标为 ,对称轴为直线 ;当 时,y随着x的增大而 ;当 时,y随着x的增大而 ;当 时,函数取最小值 .
[2]当a<0时,函数y=ax2+bx+c图象开口方向 ;顶点坐标为 ,对称轴为直线 ;当 时,y随着x的增大而 ;当 时,y随着x的增大而 ;当 时,函数取最大值 .
1. 二次函数y=ax2+bx+c的图像和性质
问题[1] 函数y=ax2与y=x2的图象之间存在怎样的关系?
问题[2] 函数y=a(x+h)2+k与y=ax2的图象之间存在怎样的关系?
由上面的结论,我们可以得到研究二次函数y=ax2+bx+c(a≠0)的图象的方法:
(2)过原点
的另一条直线
交双曲线
于
两点(
点在第一象限),若由点
为顶点组成的四边形面积为
,求点
的坐标.
★ 专题五 二次函数
【要点回顾】
(1)求
的值;
3.如图,已知直线
与双曲线
交于
两点,且点
的横坐标为
.
2.如图,平行四边形ABCD中,A在坐标原点,D在第一象限角平分线上,又知
,
,求
点的坐标.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com