题目列表(包括答案和解析)
35、
(2005年大连)如图13-1,操作:把正方形CGEF的对角线
CE放在正方形ABCD的边BC的延长线上(CG>BC),
取线段AE的中点M。
探究:线段MD、MF的关系,并加以证明。
说明:(1)如果你经历反复探索,没有找到解决问题
的方法,请你把探索过程中的某种思路写出来(要求
至少写3步);(2)在你经历说明(1)的过程之后,
可以从下列①、②、③中选取一个补充或更换已知条件,
完成你的证明。
注意:选取①完成证明得10分;选取②完成证明得
7分;选取③完成证明得5分。
① DM的延长线交CE于点N,且AD=NE;
② 将正方形CGEF绕点C逆时针旋转45°(如图13-2),
其他条件不变;③在②的条件下且CF=2AD。
附加题:将正方形CGEF绕点C旋转任意角度后
(如图13-3),其他条件不变。探究:线段MD、
MF的关系,并加以证明。
34、(2005年无锡)如图,已知矩形ABCD的边长AB=2,BC=3,点P是AD边上的一动点(P异于A、D),Q是BC边上的任意一点. 连AQ、DQ,过P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F.
(1)求证:△APE∽△ADQ;
(2)设AP的长为x,试求△PEF的面积S△PEF关于x的函数关系式,并求当P在何处时,S△PEF取得最大值?最大值为多少?
(3)当Q在何处时,△ADQ的周长最小?(须给出确定Q在何处的过程或方法,不必给出证明)
33、(2005年天津)在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示。
(Ⅰ)如图,在△ABC中,∠A=2∠B,且∠A=60°。求证:a2=b(b+c)
(Ⅱ)如果一个三角形的一个内角等于另一个内角的2 倍,我们称这样的三角形为“倍角三角形”。本题第一问中的三角形是一个特殊的倍角三角形,那么对于任意的倍角三角形ABC,其中∠A=2∠B,关系式a2=b(b+c)是否仍然成了?并证明你的结论;
(Ⅲ)试求出一个倍角三角形的三条边的长,使这三条边长恰为三个连续的正整数。
32、(2005年安徽)图(1)是一个10×10格点正方形组成的网格. △ABC是格点三角形(顶点在网格交点处), 请你完成下面两个问题:
(1) 在图(1)中画出与△ABC相似的格点△A1B1C1和△A2B2C2, 且△A1B1C1与△ABC的相似比是2, △A2B2C2与△ABC的相似比是
;
(2) 在图(2)中用与△ABC、△A1B1C1、△A2B2C2全等的格点三角形(每个三角形至少使用一次), 拼出一个你熟悉的图案,并为你设计的图案配一句贴切的解说词。
![]()
31、(2005年荆州)赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为 米.
30、
(2005年台州)如图,在4×4的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上。
(1)填空:∠ABC= °,BC= ;
(2)判断△ABC与△DEF是否相似,并证明你的结论。
29、(2005年佛山实验区)如图:地面A处有一支燃烧的蜡烛(长度不计),一个人在A与墙BC之间运动,则他在墙上的投影长度随着他离墙的距离变小而 (填“变大”、“变小”或“不变”).
28、(2004年资阳实验区)如图2,若A、B、C、P、Q、甲、乙、丙、丁
都是方格纸中的格点,为使△ABC∽△PQR,则点R应是甲、乙、
丙、丁四点中的( )
A、甲 B、乙 C、丙 D、丁
![]()
![]()
第28题 第30题
27、(2004年杭州)右图为羽毛球单打场地按比例缩小的示意图
(由图中粗实线表示),它的宽度为5.18米,那么它的长大约
在( )
(A)12米至13米之间 (B)13米至14米之间
(C)14米至15米之间 (D)15米至16米之间
26、(2004年哈尔滨)若
,则
=
。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com