8.(★★★★★){an}为等差数列,公差d≠0,an≠0,(n∈N*),且akx2+2ak+1x+ak+2=0(k∈N*)
(1)求证:当k取不同自然数时,此方程有公共根;
(2)若方程不同的根依次为x1,x2,…,xn,…,求证:数列
为等差数列.
7.(★★★★)设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2·b4=a3,分别求出{an}及{bn}的前n项和S10及T10.
6.(★★★★★)已知数列{an}为等差数列,公差d≠0,由{an}中的部分项组成的数列
a
,a
,…,a
,…为等比数列,其中b1=1,b2=5,b3=17.
(1)求数列{bn}的通项公式;
(2)记Tn=C
b1+C
b2+C
b3+…+C
bn,求
.
5.(★★★★★)设等差数列{an}的前n项和为Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范围;
(2)指出S1、S2、…、S12中哪一个值最大,并说明理由.
4.(★★★★)已知a、b、c成等比数列,如果a、x、b和b、y、c都成等差数列,则
=_________.
3.(★★★★)等差数列{an}共有2n+1项,其中奇数项之和为319,偶数项之和为290,则其中间项为_________.
2.(★★★★)已知a,b,a+b成等差数列,a,b,ab成等比数列,且0<logm(ab)<1,则m的取值范围是_________.
1.(★★★★)等比数列{an}的首项a1=-1,前n项和为Sn,若
,则
Sn等于( )
C.2 D.-2
(四)认识函数思想的实质,强化应用意识
函数思想的实质就是用联系与变化的观点提出数学对象,抽象数量特征,建立函数关系,求得问题的解决.纵观近几年高考题,考查函数思想方法尤其是应用题力度加大,因此一定要认识函数思想实质,强化应用意识.
(三)把握数形结合的特征和方法
函数图象的几何特征与函数性质的数量特征紧密结合,有效地揭示了各类函数和定义域、值域、单调性、奇偶性、周期性等基本属性,体现了数形结合的特征与方法,为此,既要从定形、定性、定理、定位各方面精确地观察图形、绘制图形,又要熟练地掌握函数图象的平移变换、对称变换.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com