0  420951  420959  420965  420969  420975  420977  420981  420987  420989  420995  421001  421005  421007  421011  421017  421019  421025  421029  421031  421035  421037  421041  421043  421045  421046  421047  421049  421050  421051  421053  421055  421059  421061  421065  421067  421071  421077  421079  421085  421089  421091  421095  421101  421107  421109  421115  421119  421121  421127  421131  421137  421145  447090 

5.某艺术组有9人,每人至少会钢琴和小号中的一种乐器,其中7人会钢琴,3人会小号,从中选出会钢琴与会小号的各1人,有多少种不同的选法?

试题详情

4. 在连结正八边形的三个顶点组成的三角形中,与正八边形有公共边的有多少个?

试题详情

3. 在1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数与真数,能得到多少个不同的对数值?

试题详情

2.集合A={1,2,-3},B={-1,-2,3,4},从A、B中各取1个元素作为占点P的坐标.(1)可以得到多少个不同的点?

(2)在这些点中位于第一象限的点有几个?

试题详情

1.将4个不同的小球放入编号为1、2、3的三个不同的盒子中,其中每个盒子都不空的放法共有( )

  A.种      B.种    C.18种     D.36种

试题详情

[例1]体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有  ( )

A.12 种    B.7种 C.24种      D.49种

错解:学生进出体育场大门需分两类,一类从北边的4个门进,一类从南侧的3个门进,由分类计数原理,共有7种方案.  ∴选B

错因:没有审清题意.本题不仅要考虑从哪个门进,还需考虑从哪个门出,应该用分步计数原理去解题.

正解:学生进门有7种选择,同样出门也有7种选择,由分步计数原理,该学生的进出门方案有7×7=49种. ∴应选D.

[例2]从1,2,3,…,10中选出3个不同的数,使这三个数构成等差数列,则这样的数列共有多少个?

错解:根据构成的等差数列的公差,分为公差为1、2、3、4四类.公差为1时,有8个;公差为2时,首先将数字分成1,3,5,7,9,和2,4,6,8,10两组,再得到满足要求的数列共3+3=6个;公差为3时,有1,4,7和4,7,10和3,6,9以及2,5,8,共4个;公差为4时,只有1,5,9和2,6,10两个.由分类计数原理可知,共构成了不同的等差数列8+6+4+2=20个.

错因:上述解答忽略了1,2,3与3,2,1它们是不同的数列, 因而导致考虑问题不全面,从而出现漏解. 这需要在解题过程中要全方位、多角度审视问题.

正解:根据构成的等差数列的公差,分为公差为±1、±2、±3、±4四类.公差为±1时,有8×2=16个;公差为±2时,满足要求的数列共6×2=12个;公差为±3时,有4×2=8个;公差为±4时,只有2×2=4个.由分类计数原理可知,共构成了不同的等差数列16+12+8+4=40个.

[例3]三张卡片的正反面分别写有1和2,3和4,5和6,若将三张卡片并列,可得到几个不同的三位数(6不能作9用).

解:解法一 第一步,选数字.每张卡片有两个数字供选择,故选出3个数字,共有=8种选法.第二步,排数字.要排好一个三位数,又要分三步,首先排百位,有3种选择,由于排出的三位数各位上的数字不可能相同,因而排十位时有2种选择,排个位只有一种选择.故能排出3×2×1=6个不同的三位数.

由分步计数原理,共可得到8×6=48个不同的三位数.

解法二:第一步,排百位有6种选择,

  第二步,排十位有4种选择,

  第三步,排个位有2种选择.

 根据分步计数原理,共可得到6×4×2=48个不同的三位数.

注:如果6能当作9用,解法1仍可行.

[例4]集合A={1,2,3,4},集合B={-1,-2},可建立多少个以A为定义域B为值域的不同函数?

分析:函数是特殊的映射,可建立映射模型解决.

解: 从集合A到集合B的映射共有=16个,只有都与-1,或-2对映的两个映射不符合题意,故以A为定义域B为值域的不同函数共有16-2=14个.

[例5] 用0,1,2,3,4,5这六个数字,

(1)可以组成多少个数字不重复的三位数?

(2)可以组成多少个数字允许重复的三位数?

(3)可以组成多少个数字不重复的三位奇数?

(4)可以组成多少个数字不重复的小于1000的自然数?

(5)可以组成多少个数字不重复的大于3000,小于5421的四位数?

解:(1)分三步:①先选百位数字,由于0不能作为百位数,因此有5种选法;②十位数字有5种选法;③个位数字有4种选法.由分步计数原理知所求三位数共有5×5×4=100个.

 (2)分三步:①先选百位数字,由于0不能作为百位数,因此有5种选法;②十位数字有6种选法;③个位数字有6种选法.由分步计数原理知所求三位数共有5×6×6=180个.

 (3)分三步:①先选个位数字,由于组成的三位数是奇数,因此有3种选法;②再选百位数字有4种选法;③个位数字也有4种选法.由分步计数原理知所求三位数共有3×4×4=48个.

 (4)分三类:①一位数,共有6个;②两位数,共有5×5=25个;③三位数,共有5×5×4=100个.因此,比1000小的自然数共有6+25+100=131个

 (5)分四类:①千位数字为3,4之一时,共有2×5×4×3=120个;②千位数字为5,百位数字为0,1,2,3之一时,共有4×4×3=48个;③千位数字为5,百位数字是4,十位数字为0,1之一时,共有2×3=6个;④还有5420也是满足条件的1个.故所求自然数共120+48+6+1=175个

评注:排数字问题是最常见的一种题型,要特别注意首位不能排0.

试题详情

5.在有些问题中,还应充分注意到在完成某件事时,具体实践的可行性.例如:从甲地到乙地 ,要从甲地先乘火车到丙地,再从丙地乘汽车到乙地.那么从甲地到乙地共有多少种不同的走法?这个问题中,必须注意到发车时刻,所限时间,答案较多.

试题详情

4.在具体解题时,常常见到某个问题中,完成某件事,既有分类,又有分步,仅用一种原理不能解决,这时需要认真分析题意,分清主次,选择其一作为主线.

试题详情

3.两个原理的区别在于一个和分类有关,一个和分步有关.如果完成一件事有n类办法,这n类办法彼此之间是相互独立的,无论哪一类办法中的哪一个都能单独完成这件事,求完成这件事的方法种数,就用分类计数原理.如果完成一件事,需分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数,就用分步计数原理.

试题详情

2.分步原理中分步的理解:“完成一件事,需要分成n个步骤”这就是说完成这件事的任何一种方法,都要完成这n个步骤.分步时,首先要根据问题的特点确定一个可行的分步标准,其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤,这件事才算最终完成.

试题详情


同步练习册答案