0  422241  422249  422255  422259  422265  422267  422271  422277  422279  422285  422291  422295  422297  422301  422307  422309  422315  422319  422321  422325  422327  422331  422333  422335  422336  422337  422339  422340  422341  422343  422345  422349  422351  422355  422357  422361  422367  422369  422375  422379  422381  422385  422391  422397  422399  422405  422409  422411  422417  422421  422427  422435  447090 

4.圆锥曲线的几何性质:

(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线; ⑤离心率:,椭圆越小,椭圆越圆;越大,椭圆越扁。如(1)若椭圆的离心率,则的值是__(答:3或);(2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__(答:)

(2)双曲线(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为2,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线; ⑤离心率:,双曲线等轴双曲线越小,开口越小,越大,开口越大;⑥两条渐近线:。如(1)双曲线的渐近线方程是,则该双曲线的离心率等于______(答:);(2)双曲线的离心率为,则=         (答:4或);(3)设双曲线(a>0,b>0)中,离心率e∈[,2],则两条渐近线夹角θ的取值范围是________(答:);

(3)抛物线(以为例):①范围:;②焦点:一个焦点,其中的几何意义是:焦点到准线的距离;③对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);④准线:一条准线; ⑤离心率:,抛物线。如设,则抛物线的焦点坐标为________(答:);

试题详情

3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):

(1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。如已知方程表示焦点在y轴上的椭圆,则m的取值范围是__(答:)

(2)双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴上;

(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。

特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,,在双曲线中,最大,

试题详情

2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):

(1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时=1()。方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。如(1)已知方程表示椭圆,则的取值范围为____(答:);(2)若,且,则的最大值是____,的最小值是___(答:)

(2)双曲线:焦点在轴上: =1,焦点在轴上:=1()。方程表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。如(1)双曲线的离心率等于,且与椭圆有公共焦点,则该双曲线的方程_______(答:);(2)设中心在坐标原点,焦点在坐标轴上,离心率的双曲线C过点,则C的方程为_______(答:)

(3)抛物线:开口向右时,开口向左时,开口向上时,开口向下时

试题详情

1.圆锥曲线的两个定义:

(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段FF,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|FF|,定义中的“绝对值”与<|FF|不可忽视。若=|FF|,则轨迹是以F,F为端点的两条射线,若﹥|FF|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。如(1)已知定点,在满足下列条件的平面上动点P的轨迹中是椭圆的是 A. B. C.     D.(答:C);(2)方程表示的曲线是_____(答:双曲线的左支)

(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。如已知点及抛物线上一动点P(x,y),则y+|PQ|的最小值是_____(答:2)

试题详情

12、向量中一些常用的结论:

(1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;

(2),特别地,当同向或有

;当反向或有;当不共线(这些和实数比较类似).

(3)在中,①若,则其重心的坐标为。如若⊿ABC的三边的中点分别为(2,1)、(-3,4)、  (-1,-1),则⊿ABC的重心的坐标为_______(答:);

的重心,特别地的重心;

的垂心;

④向量所在直线过的内心(是的角平分线所在直线);

的内心;

(3)若P分有向线段所成的比为,点为平面内的任一点,则,特别地的中点

(4)向量中三终点共线存在实数使得.如平面直角坐标系中,为坐标原点,已知两点,,若点满足,其中,则点的轨迹是_______(答:直线AB)

试题详情

11.平移公式:如果点按向量平移至,则;曲线按向量平移得曲线.注意:(1)函数按向量平移与平常“左加右减”有何联系?(2)向量平移具有坐标不变性,可别忘了啊!如(1)按向量平移到,则按向量把点平移到点______(答:(-8,3));(2)函数的图象按向量平移后,所得函数的解析式是,则=________(答:)

试题详情

10.线段的定比分点:

(1)定比分点的概念:设点P是直线PP上异于P、P的任意一点,若存在一个实数 ,使,则叫做点P分有向线段所成的比,P点叫做有向线段的以定比为的定比分点;

(2)的符号与分点P的位置之间的关系:当P点在线段 PP上时>0;当P点在线段 PP的延长线上时<-1;当P点在线段PP的延长线上时;若点P分有向线段所成的比为,则点P分有向线段所成的比为。如若点所成的比为,则所成的比为_______(答:)

(3)线段的定比分点公式:设分有向线段所成的比为,则,特别地,当=1时,就得到线段PP的中点公式。在使用定比分点的坐标公式时,应明确的意义,即分别为分点,起点,终点的坐标。在具体计算时应根据题设条件,灵活地确定起点,分点和终点,并根据这些点确定对应的定比。如(1)若M(-3,-2),N(6,-1),且,则点P的坐标为_______(答:);(2)已知,直线与线段交于,且,则等于_______(答:2或-4)

试题详情

9、向量垂直的充要条件: .特别地。如(1)已知,若,则    (答:);(2)以原点O和A(4,2)为两个顶点作等腰直角三角形OAB,,则点B的坐标是________ (答:(1,3)或(3,-1));(3)已知向量,且,则的坐标是________ (答:)

试题详情

8、向量平行(共线)的充要条件:=0。如(1)若向量,当=_____时共线且方向相同(答:2);(2)已知,且,则x=______(答:4);(3)设,则k=_____时,A,B,C共线(答:-2或11)

试题详情

7、向量的运算律:(1)交换律:;(2)结合律:;(3)分配律:。如下列命题中:① ;② ;③

;④ 若,则;⑤若;⑥;⑦;⑧;⑨。其中正确的是______(答:①⑥⑨)

提醒:(1)向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,切记两向量不能相除(相约);(2)向量的“乘法”不满足结合律,即,为什么?

试题详情


同步练习册答案