4.(2009·辽宁高考)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有 ( )
A.70种 B.80种 C.100种 D.140种
解析:分恰有2名男医生和恰有1名男医生两类,从而组队方案共有:C×C+C×C=70种.
答案:A
3.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为 ( )
A.14 B.24 C.28 D.48
解析:法一:4人中至少有1名女生包括1女3男及2女2男两种情况,故不同的选派方案种数为
C·C+C·C=2×4+1×6=14.
法二:从4男2女中选4人共有C种选法,4名都是男生的选法有C种,故至少有1名女生的选派方案种数为C-C=15-1=14.
答案:A
2.有四个游戏盘,如果撒一粒黄豆落在阴影部分,则可中奖,小明希望中奖,他应当选择的游戏盘为 ( )
![]()
解析:A游戏盘的中奖概率为
,B游戏盘的中奖概率为
,C游戏盘的中奖概率为
,D游戏盘的中奖概率为
,A游戏盘的中奖概率最大.
答案:A
1.把红桃、黑桃、方块、梅花四张纸牌随机发给甲、乙、丙、丁四个人,每人分得一张,事件“甲分得梅花”与事件“乙分得梅花”是 ( )
A.对立事件 B.不可能事件
C.互斥但不对立事件 D.以上答案均不对
解析:四张纸牌分发给四人,每人一张,甲和乙不可能同时分得梅花,所以是互斥事件,但也有可能丙或丁分得梅花,故不是对立事件.
答案:C
21.已知函数f(x)=ax--2lnx,f(1)=0.
(1)若函数f(x)在其定义域内为单调函数,求a的取值范围;
(2)若函数f(x)的图象在x=1处的切线的斜率为0,且an+1=f′()-n2+1,已知a1=4,求证:an≥2n+2.
解:(1)因为f(1)=a-b=0,所以a=b,
所以f(x)=ax--2lnx,
所以f′(x)=a+-.
要使函数f(x)在定义域(0,+∞)内为单调函数,
则在(0,+∞)内f′(x)恒大于等于0或恒小于等于0.
当a=0时,则f′(x)=-<0在(0,+∞)内恒成立;适合题意.
当a>0时,要使f′(x)=a(-)2+a-≥0恒成立,则a-≥0,解得a≥1;
当a<0时,由f′(x)=a+-<0恒成立,适合题意.
所以a的取值范围为(-∞,0]∪[1,+∞).
(2)根据题意得:f′(1)=0,即a+a-2=0,得a=1,
所以f′(x)=(-1)2,
于是an+1=f′()-n2+1=(an-n)2-n2+1
=a-2nan+1.
用数学归纳法证明如下:
当n=1时,a1=4=2×1+2,
当n=2时,a2=9>2×2+2;
假设当n=k(k≥2且k∈N*)时,不等式ak>2k+2成立,即ak-2k>2成立,
则当n=k+1时,ak+1=ak(ak-2k)+1>(2k+2)×2+1=4k+5>2(k+1)+2,
所以当n=k+1,不等式也成立,
综上得对所有n∈N*时,都有an≥2n+2.
20.某工艺品加工厂准备生产具有收藏价值的奥运会标志--“中国印·舞动的北京”和奥运会吉祥物--“福娃”.该厂所用的主要原料为A、B两种贵金属,已知生产一套奥运会标志需用原料A和原料B的量分别为4盒和3盒,生产一套奥运会吉祥物需用原料A和原料B的量分别为5盒和10盒.若奥运会标志每套可获利700元,奥运会吉祥物每套可获利1200元,该厂月初一次性购进原料A、B的量分别为200盒和300盒.问该厂生产奥运会标志和奥运会吉祥物各多少套才能使该厂月利润最大?最大利润为多少?
解:设该厂每月生产奥运会标志和奥运会吉祥物分别为x,y套,月利润为z元,
由题意得
目标函数为z=700x+1200y.
作出二元一次不等式组所表示的平面区域,即可行域,如图:
目标函数可变形为y=-x+,
∵-<-<-,
∴当y=x+通过图中的点A时,最大,z最大.解得点A坐标为(20,24).
将点A(20,24)代入z=700x+1200y
得zmax=700×20+1200×24=42800元.
答:该厂生产奥运会标志和奥运会吉祥物分别为20、24套时月利润最大,最大利润为42800元.
19.已知函数f(x)=ax2+4(a为非零实数),设函数F(x)=.
(1)若f(-2)=0,求F(x)的表达式;
(2)设mn<0,m+n>0,试判断F(m)+F(n)能否大于0?
解:(1)由f(-2)=0,4a+4=0⇒a=-1,
∴F(x)=![]()
(2)∵,∴m,n一正一负.
不妨设m>0且n<0,则m>-n>0,
F(m)+F(n)=f(m)-f(n)=am2+4-(an2+4)
=a(m2-n2),
当a>0时,F(m)+F(n)能大于0,
当a<0时,F(m)+F(n)不能大于0.
18. (2010·吉林模拟)沪杭高速公路全长166千米.假设某汽车从上海莘庄镇进入该高速公路后以不低于60千米/时且不高于120千米/时的速度匀速行驶到杭州.已知该汽车每小时的运输成本y(以元为单元)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为0.02;固定部分为200元.
(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;
(2)汽车应以多大速度行驶才能使全程运输成本最小?最小运输成本为多少元?
解:(1)依题意得:y=(200+0.02v2)×
=166(0.02v+)(60≤v≤120).
(2)y=166(0.02v+)≥166×2
=664(元)
当且仅当0.02v=即v=100千米/时时取等号.
答:当速度为100千米/时时,最小的运输成本为664元.
17.若a1>0,a1≠1,an+1=(n=1,2,…)
(1)求证:an+1≠an;
(2)令a1=,写出a2、a3、a4、a5的值,观察并归纳出这个数列的通项公式an.
解:(1)证明:(采用反证法).若an+1=an,
即=an,解得an=0,1.
从而an=an-1=…=a2=a1=0,1,与题设a1>0,a1≠1相矛盾,
故an+1≠an成立.
(2)a1=、a2=、a3=、a4=、a5=,an=,
n∈N*.
16.已知f(x)=-3x2+a(6-a)x+b.
(1)解关于a的不等式f(1)>0;
(2)当不等式f(x)>0的解集为(-1,3)时,求实数a,b的值.
解:(1)f(1)=-3+a(6-a)+b=-a2+6a+b-3,
∵f(1)>0,∴a2-6a+3-b<0.
Δ=24+4b,当Δ≤0
即b≤-6时,f(1)>0的解集为∅;
当b>-6时,3-<a<3+,
∴f(1)>0的解集为{a|3-<a<3+}.
(2)∵不等式-3x2+a(6-a)x+b>0的解集为(-1,3),
∴解之,得
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com