由
我们发现,二次项系数
分解成
,常数项
分解成
,把
写成
,这里按斜线交叉相乘,再相加,就得到
,如果它正好等于
的一次项系数
,那么
就可以分解成
,其中
位于上一行,
位于下一行.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法.
必须注意,分解因数及十字相乘都有多种可能情况,所以往往要经过多次尝试,才能确定一个二次三项式能否用十字相乘法分解.
(2)一般二次三项式
型的因式分解
∴![]()
运用这个公式,可以把某些二次项系数为1的二次三项式分解因式.
∵![]()
,
(1)
型的因式分解
这类式子在许多问题中经常出现,其特点是:①二次项系数是1;②常数项是两个数之积;③ 一次项系数是常数项的两个因数之和.
3.十字相乘法
从前面可以看出,能够直接运用公式法分解的多项式,主要是二项式和三项式.而对于四项以上的多项式,如
既没有公式可用,也没有公因式可以提取.因此,可以先将多项式分组处理.这种利用分组来因式分解的方法叫做分组分解法.分组分解法的关键在于如何分组.
常见题型:(1)分组后能提取公因式 (2)分组后能直接运用公式
2.分组分解法
[6]
(立方差公式)
由于因式分解与整式乘法正好是互为逆变形,所以把整式乘法公式反过来写,运用上述公式可以进行因式分解.
[5]
(立方和公式)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com