题目列表(包括答案和解析)

 0  47418  47426  47432  47436  47442  47444  47448  47454  47456  47462  47468  47472  47474  47478  47484  47486  47492  47496  47498  47502  47504  47508  47510  47512  47513  47514  47516  47517  47518  47520  47522  47526  47528  47532  47534  47538  47544  47546  47552  47556  47558  47562  47568  47574  47576  47582  47586  47588  47594  47598  47604  47612  447348 

2、给出以下四个命题:①一组对边平行的四边形是梯形;②一条对角线平分一个内角的平行四边形是菱形;③对角线互相垂直的矩形是正方形;④一组对边平行,另一组对边相等的四边形是平行四边形.其中真命题有                           

A.1个      B.2个     C.3个     D. 4个

[试题来源]自编

[参考答案]B

[命题意图]考察学生对于梯形、平行四边形、菱形、正方形等四边形判定的掌握情况。考题利用选择题考察面广的特点,全面考察了学生的基础知识掌握情况。

试题详情

1、一次函数y=2x+3的图象沿轴向下平移2个单位,那么所得图象的函数解

析式是  A.y=2x-3 B. y=2x+2 C. y=2x+1 D. y=2x

[试题来源]自编

[参考答案]C

[命题意图]考察学生对一次函数图象的掌握情况。教材中学习的是二次函数图象的平移, 而这里是一次函数图象的平移,此题可有效考察学生的知识迁移能力。

试题详情

1、一辆轿车在某高速公路上正常行驶时的速度为,已知该公路对轿车的限速为100,那么满足的不等关系应表示为(   )

  A、    B、    C、    D、

[命题意图]本题考查了学生对生活中不等式的理解、正确用不等式表示实际问题中的数量关系;讲评时主要引导学生正确理解“限时”的意义。

试题详情

28.(本题共12分) 如图,矩形A’B’C’D’是矩形OABC(边OA在轴正半轴上,边OC在轴正半轴上)绕B点逆时针旋转得到的,O’点在轴的正半轴上,B点的坐标为(1,3).O’C’与AB交于D点.

(1)如果二次函数()的图象经过O,O’两点且图象顶点的纵坐标为,求这个二次函数的解析式;

(2)求D点的坐标.

(3)若将直线OC绕点O旋转α度(0<α<90)后与抛物线的另一个交点为点P,则以O、O’、B、P为顶点的四边形能否是平行四边形?若能,求出的值;若不能,请说明理由.

[命题意图]考查学生的对存在问题和动点问题的思考方法

及数学思想的考查。

[参考答案]28.(1)    ……3 分

(2)D(1,)   ……7分

(3)tan=1或  ……12分(求出一个得3分,求两个得5分)

[试题来源]网络

本资料由《七彩教育网》 提供!

试题详情

27.(本题共12分) 如图1,在6×8的网格纸中,每个小正方形的边长都为1,动点P、Q分别从点F、A出发向右移动,点P的运动速度为每秒2个单位,点Q的运动速度为每秒1个单位,当点P运动到点E时,两个点都停止运动。

(1)请在6×8的网格纸中画出运动时间t为2秒时的线段PQ;

(2)如图2,动点P、Q在运动的过程中,PQ能否垂直于BF?请说明理由。

(3)在动点P、Q运动的过程中,△PQB能否成为等腰三角形?若能,请求出相应的运动时间t;若不能,请说明理由.

 

[命题意图]考查学生的数学基础知识能否灵活应用能力,及对相似三角形和三角函数的知识掌握情况。

[参考答案]27.(1)略  ……2分 

(2)不能……3 分  若PQ⊥BF时,……5分, 

,所以不能……6分(3)①BP=PQ,或8(舍去)…8分②BQ=PQ,   ……10分

③BP=BQ, 无解……12分

[试题来源]网络

试题详情

0.3x+(60-x)≤35.5,解得35≤x≤37.所以x=35或36或37,共有包装方案3种,即简装35盒与精装25盒;简装36盒与精装24盒;简装37盒与精装23盒.                  ……3分  (3)由y=-10x+1440可知当x=35时,y最大=1090元.又因1090>1088,所以能用这次收入购买包装机.            …………3分

[试题来源]网络

试题详情

26.(本题共10分)

为了增加农民收入,村委会成立了蘑菇产销联合公司,小明家是公司成员之一,他家五月份收获干蘑菇42.5kg,干香菇35.5kg。按公司收购要求,需将两种蘑菇包装成简装和精装两种型号的盒式装蘑菇共60盒卖给公司。设包装简装型的盒数为x盒,两种型号的盒装蘑菇可获得的总利润为y(元)。包装要求及每盒获得的利润见下表:

品种及利润
型号型
装入干蘑菇重量(kg)
 
装入干香菇重量(kg)
 
每盒利润(元)
简装型(每盒)
0.9
0.3
14
精装型(每盒)
0.4
1
24

(1)写出用含x的代数式表示y的式子;

(2)为满足公司的收购要求,问有哪几种包装方案可供选择?

(3)小明的爸爸想只用这次的收入买一台价值1088元的包装机用于扩大生产,你说能行吗?请证明你的结论.

[命题意图]考查学生的数学知识的实际应用能力,考查了不等式,一次函数的综合应用。

[参考答案]解(1)由题设易得y=14x+(60-x)×24=-10x+1440……2分  

(2)依题意,有0.9x+0.4(60-x)×≤42.5     ……2分

试题详情

25.(本题共10分)已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=OB.

(1)试判断直线AB与⊙O的位置关系,并说明理由;

(2)若D为⊙O上一点,∠ACD=45°,AD=,求扇形OAC的面积.

[命题意图]考查学生的数学基础掌握及灵活应用知识的能力

[参考答案]25﹒(1)相切(1分)理由(略)(4分)

不交待“O是半径OA的外端”扣一分(2)S=

[试题来源]网络

试题详情

24.(本题共10分)张红和王伟为了争取到一张观看奥运知识竞赛的入场券,他们各自设计了一个方案:张红的方案是:转动如图所示的转盘,如果指针停在阴影区域,则张红得到入场券;如果指针停在白色区域,则王伟得到入场券(转盘被等分成6个扇形.若指针停在边界处,则重新转动转盘)。

王伟的方案是:从一副扑克牌中取出方块1、2、3,将它们背面朝上重新洗牌后,从中摸出一张,记录下牌面数字后放回,洗匀后再摸出一张.若摸出两张牌面数字之和为奇数,则张红得到入场劵;若摸出两张牌面数字之和为偶数,则王伟得到入场券.

(1)计算张红获得入场券的概率,并说明张红的方案是否公平?

(2)用树状图(或列表法)列举王伟设计方案的所有情况,计算王伟

获得入场券的概率,并说明王伟的方案是否公平?

[命题意图]考查学生的数学知识的实际应用能力。

[参考答案]24﹒(1)公平……(4分)

(2)树状图或列表…(6分)王伟获奖的概率是………………………(7分)

张红获奖的概率是…………(8分)…………(9分)不公平………(10分)

[试题来源]网络

试题详情

23.元旦节前布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小敏测量了部分彩纸链的长度,她得到的数据如下表:

纸环数x(个)
1
2
3
4

彩纸链长度y(cm)
20
35
50
65

(1)把上表中xy的各组对应值作为点的坐标,在如图所示的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;

(2)教室天花板对角线长为12m,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少用多少个纸环?

[命题意图]考查学生的数学知识的实际应用能力

[参考答案](1)描点           ……2

把x=1,y=20和x=2,y=35分别代入y=kx+b中

k=15,b=5

所以y=15x+5           ……3

(2)根据题意得  15x+5≥1200

             ……3

所以至少用80个纸环.

[试题来源]网络

试题详情


同步练习册答案