题目列表(包括答案和解析)
76.(08天津市卷26题)(本小题10分)
已知抛物线
,
(Ⅰ)若
,
,求该抛物线与
轴公共点的坐标;
(Ⅱ)若
,且当
时,抛物线与
轴有且只有一个公共点,求
的取值范围;
(Ⅲ)若
,且
时,对应的
;
时,对应的
,试判断当
时,抛物线与
轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.
(08天津市卷26题解析)解(Ⅰ)当
,
时,抛物线为
,
方程
的两个根为
,
.
∴该抛物线与
轴公共点的坐标是
和
.
················································ 2分
(Ⅱ)当
时,抛物线为
,且与
轴有公共点.
对于方程
,判别式
≥0,有
≤
. ········································ 3分
①当
时,由方程
,解得
.
此时抛物线为
与
轴只有一个公共点
.·································
4分
②当
时,
时,
,
时,
.
由已知
时,该抛物线与
轴有且只有一个公共点,考虑其对称轴为
,
应有
即![]()
解得
.
综上,
或
. ················································································ 6分
(Ⅲ)对于二次函数
,
由已知
时,
;
时,
,
又
,∴
.
于是
.而
,∴
,即
.
∴
.
············································································································ 7分
∵关于
的一元二次方程
的判别式
,
∴抛物线
与
轴有两个公共点,顶点在
轴下方.····························· 8分
又该抛物线的对称轴
,
由
,
,
,
得
,
∴
.
又由已知
时,
;
时,
,观察图象,
可知在
范围内,该抛物线与
轴有两个公共点. ············································ 10分
77(08湖北宜昌25题)如图1,已知四边形OABC中的三个顶点坐标为O(0,0),A(0,n),C(m,0).动点P从点O出发依次沿线段OA,AB,BC向点C移动,设移动路程为z,△OPC的面积S随着z的变化而变化的图象如图2所示.m,n是常数, m>1,n>0.
(1)请你确定n的值和点B的坐标;
(2)当动点P是经过点O,C的抛物线y=ax
+bx+c的顶点,且在双曲线y=
上时,求这时四边形OABC的面积.
(08湖北宜昌25题解析)解:(1) 从图中可知,当P从O向A运动时,△POC的面积S=
mz, z由0逐步增大到2,则S由0逐步增大到m,故OA=2,n=2 . (1分)
同理,AB=1,故点B的坐标是(1,2).(2分)
(2)解法一:
∵抛物线y=ax
+bx+c经过点O(0,0),C(m ,0),∴c=0,b=-am,(3分)
∴抛物线为y=ax
-amx,顶点坐标为(
,-am2).(4分)
如图1,设经过点O,C,P的抛物线为l.
当P在OA上运动时,O,P都在y轴上,
这时P,O,C三点不可能同在一条抛物线上,
∴这时抛物线l不存在, 故不存在m的值..①
当点P与C重合时,双曲线y=
不可能经过P,
故也不存在m的值.②(5分)
(说明:①②任做对一处评1分,两处全对也只评一分)
当P在AB上运动时,即当0<x
≤1时,y
=2,
抛物线l的顶点为P(
,2).
∵P在双曲线y=
上,可得 m=
,∵
>2,与 x
=
≤1不合,舍去.(6分)③
容易求得直线BC的解析式是:
,(7分)
当P在BC上运动,设P的坐标为 (x
,y
),当P是顶点时 x
=
,
故得y
=
=
,顶点P为(
,
),
∵1< x
=
<m,∴m>2,又∵P在双曲线y=
上,
于是,
×
=
,化简后得5m
-22m+22=0,
解得
,
,(8分)![]()
![]()
![]()
与题意2<x
=
<m不合,舍去.④(9分)
故由①②③④,满足条件的只有一个值:
.
这时四边形OABC的面积=
=
.(10分)
(2)
解法二:
∵抛物线y=ax
+bx+c经过点O(0,0),C(m ,0)
∴c=0,b=-am,(3分)
∴抛物线为y=ax
-amx,顶点坐标P为(,-am2). (4分)
∵m>1,∴>0,且≠m,
∴P不在边OA上且不与C重合. (5分)
∵P在双曲线y=上,∴×(- am2)=即a=- .
.①当1<m≤2时,<≤1,如图2,分别过B,P作x轴的垂线,
M,N为垂足,此时点P在线段AB上,且纵坐标为2,
∴-am2=2,即a=-.
而a=- ,∴- =-,m=>2,而1<m≤2,不合题意,舍去.(6分)
②当m≥2时,>1,如图3,分别过B,P作x轴的垂线,M,N为垂足,ON>OM,
此时点P在线段CB上,易证Rt△BMC∽Rt△PNC,
∴BM∶PN=MC∶NC,即: 2∶PN=(m-1)∶,∴PN=(7分)
而P的纵坐标为- am2,∴=- am2,即a=
而a=-,∴- =
化简得:5m2-22m+22=0.解得:m= ,(8分)
但m≥2,所以m=舍去,(9分)
取m = .
由以上,这时四边形OABC的面积为:
(AB+OC) ×OA=(1+m) ×2=. (10分)
74.(08广东东莞22题)(本题满分9分)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边
AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.
(1)填空:如图9,AC= ,BD= ;四边形ABCD是 梯形.
(2)请写出图9中所有的相似三角形(不含全等三角形).
(3)如图10,若以AB所在直线为
轴,过点A垂直于AB的直线为
轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向
轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.
(08广东东莞22题解析)解:(1)
,
,…………………………1分
等腰;…………………………2分
(2)共有9对相似三角形.(写对3-5对得1分,写对6-8对得2分,写对9对得3分)
①△DCE、△ABE与△ACD或△BDC两两相似,分别是:△DCE∽△ABE,△DCE∽△ACD,△DCE∽△BDC,△ABE∽△ACD,△ABE∽△BDC;(有5对)
②△ABD∽△EAD,△ABD∽△EBC;(有2对)
③△BAC∽△EAD,△BAC∽△EBC;(有2对)
所以,一共有9对相似三角形.…………………………………………5分
(3)由题意知,FP∥AE,
∴ ∠1=∠PFB,
又∵ ∠1=∠2=30°,
∴ ∠PFB=∠2=30°,
∴ FP=BP.…………………………6分
过点P作PK⊥FB于点K,则
.
∵ AF=t,AB=8,
∴ FB=8-t,
.
在Rt△BPK中,
. ……………………7分
∴ △FBP的面积
,
∴ S与t之间的函数关系式为:
,或
. …………………………………8分
t的取值范围为:
. …………………………………………………………9分
75(08甘肃兰州28题)(本题满分12分)如图19-1,
是一张放在平面直角坐标系中的矩形纸片,
为原点,点
在
轴的正半轴上,点
在
轴的正半轴上,
,
.
(1)在
边上取一点
,将纸片沿
翻折,使点
落在
边上的点
处,求
两点的坐标;
(2)如图19-2,若
上有一动点
(不与
重合)自
点沿
方向向
点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为
秒(
),过
点作
的平行线交
于点
,过点
作
的平行线交
于点
.求四边形
的面积
与时间
之间的函数关系式;当
取何值时,
有最大值?最大值是多少?
(3)在(2)的条件下,当
为何值时,以
为顶点的三角形为等腰三角形,并求出相应的时刻点
的坐标.
(08甘肃兰州28题解析)(本题满分12分)
解:(1)依题意可知,折痕
是四边形
的对称轴,
在
中,
,
.
.
.
点坐标为(2,4).································································································ 2分
在
中,
, 又
.
. 解得:
.
点坐标为
···································································································· 3分
(2)如图①
,
.
,又知
,
,![]()
, 又
.
而显然四边形
为矩形.
·························································· 5分
,又![]()
当
时,
有最大值
.········································································ 6分
(3)(i)若以
为等腰三角形的底,则
(如图①)
在
中,
,
,
为
的中点,
![]()
.
又
,
为
的中点.
过点
作
,垂足为
,则
是
的中位线,
,
,
当
时,
,
为等腰三角形.
此时
点坐标为
.··························································································· 8分
(ii)若以
为等腰三角形的腰,则
(如图②)
在
中,
.
过点
作
,垂足为
.
,
.
.
,
.
,
,
当
时,(
),此时
点坐标为
.·························· 11分
综合(i)(ii)可知,
或
时,以
为顶点的三角形为等腰三角形,相应
点的坐标为
或
.·········································································································· 12分
71.(08江苏镇江28题)(本小题满分8分)探索研究
如图,在直角坐标系
中,点
为函数
在第一象限内的图象上的任一点,点
的坐标为
,直线
过
且与
轴平行,过
作
轴的平行线分别交
轴,
于
,连结
交
轴于
,直线
交
轴于
.
(1)求证:
点为线段
的中点;
(2)求证:①四边形
为平行四边形;
②平行四边形
为菱形;
(3)除
点外,直线
与抛物线
有无其它公共点?并说明理由.
(08江苏镇江28题解析)(1)法一:由题可知
.
,
,
.························································································· (1分)
,即
为
的中点.····································································· (2分)
法二:
,
,
.·························································· (1分)
又
轴,
.··············································································· (2分)
(2)①由(1)可知
,
,
,
,
.·························································································· (3分)
,
又
,
四边形
为平行四边形.···················································· (4分)
②设
,
轴,则
,则
.
过
作
轴,垂足为
,在
中,
.
平行四边形
为菱形.··············································································· (6分)
(3)设直线
为
,由
,得
,
代入得:
![]()
直线
为
.························ (7分)
设直线
与抛物线的公共点为
,代入直线
关系式得:
,
,解得
.得公共点为
.
所以直线
与抛物线
只有一个公共点
.············································· (8分)
72(08黑龙江齐齐哈尔28题)(本小题满分10分)
如图,在平面直角坐标系中,点
,点
分别在
轴,
轴的正半轴上,且满足
.
(1)求点
,点
的坐标.
(2)若点
从
点出发,以每秒1个单位的速度沿射线
运动,连结
.设
的面积为
,点
的运动时间为
秒,求
与
的函数关系式,并写出自变量的取值范围.
(3)在(2)的条件下,是否存在点
,使以点
为顶点的三角形与
相似?若存在,请直接写出点
的坐标;若不存在,请说明理由.
(08黑龙江齐齐哈尔28题解析)解:(1)![]()
,
··················································································· (1分)
,![]()
点
,点
分别在
轴,
轴的正半轴上
······························································································· (2分)
(2)求得
························································································· (3分)
![]()
(每个解析式各1分,两个取值范围共1分)························································· (6分)
(3)
;
;
;
(每个1分,计4分)
···························································································································· (10分)
注:本卷中所有题目,若由其它方法得出正确结论,酌情给分.
73(08海南省卷24题)(本题满分14分)如图13,已知抛物线经过原点O和x轴上另一点A,它的对称轴x=2 与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点D、E.
(1)求m的值及该抛物线对应的函数关系式;
(2)求证:① CB=CE ;② D是BE的中点;
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE,若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.
(08海南省卷24题解析)(1)∵ 点B(-2,m)在直线y=-2x-1上,
∴ m=-2×(-2)-1=3. ………………………………(2分)
∴ B(-2,3)
∵ 抛物线经过原点O和点A,对称轴为x=2,
∴ 点A的坐标为(4,0) .
设所求的抛物线对应函数关系式为y=a(x-0)(x-4). ……………………(3分)
将点B(-2,3)代入上式,得3=a(-2-0)(-2-4),∴
.
∴ 所求的抛物线对应的函数关系式为
,即
. (6分)
(2)①直线y=-2x-1与y轴、直线x=2的交点坐标分别为D(0,-1) E(2,-5).
过点B作BG∥x轴,与y轴交于F、直线x=2交于G,
则BG⊥直线x=2,BG=4.
在Rt△BGC中,BC=
.
∵ CE=5,
∴ CB=CE=5. ……………………(9分)
②过点E作EH∥x轴,交y轴于H,
则点H的坐标为H(0,-5).
又点F、D的坐标为F(0,3)、D(0,-1),
∴ FD=DH=4,BF=EH=2,∠BFD=∠EHD=90°.
∴ △DFB≌△DHE (SAS),
∴ BD=DE.
即D是BE的中点. ………………………………(11分)
(3) 存在. ………………………………(12分)
由于PB=PE,∴ 点P在直线CD上,
∴ 符合条件的点P是直线CD与该抛物线的交点.
设直线CD对应的函数关系式为y=kx+b.
将D(0,-1) C(2,0)代入,得
. 解得
.
∴ 直线CD对应的函数关系式为y=
x-1.
∵ 动点P的坐标为(x,
),
∴
x-1=
.
………………………………(13分)
解得
,
. ∴
,
.
∴ 符合条件的点P的坐标为(
,
)或(
,
).…(14分)
(注:用其它方法求解参照以上标准给分.)
91.(08新疆自治区24题)(10分)某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物线拱高为5.6m.
(1)在如图所示的平面直角坐标系中,求抛物线的表达式.
(2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m.请计算最多可安装几扇这样的窗户?
![]()
(08新疆自治区24题解析)24.(10分)解:(1)设抛物线的表达式为
1分
点
在抛物线的图象上.
∴![]()
······························································ 3分
∴抛物线的表达式为
············································································· 4分
(2)设窗户上边所在直线交抛物线于C、D两点,D点坐标为(k,t)
已知窗户高1.6m,∴
··························································· 5分
![]()
(舍去)············································································ 6分
∴
(m)·············································································· 7分
又设最多可安装n扇窗户
∴
····················································································· 9分
.
答:最多可安装4扇窗户.···················································································· 10分
(本题不要求学生画出4个表示窗户的小矩形)
90.(08四川自贡26题)抛物线
的顶点为M,与
轴的交点为A、B(点B在点A的右侧),△ABM的三个内角∠M、∠A、∠B所对的边分别为m、a、b。若关于
的一元二次方程
有两个相等的实数根。
(1)判断△ABM的形状,并说明理由。
(2)当顶点M的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形。
(3)若平行于
轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与
轴相切,求该圆的圆心坐标。
(08四川自贡26题解析)解:(1)令![]()
得![]()
由勾股定理的逆定理和抛物线的对称性知
△ABM是一个以
、
为直角边的等腰直角三角形
(2)设![]()
∵△ABM是等腰直角三角形
∴斜边上的中线等于斜边的一半
又顶点M(-2,-1)
∴
,即AB=2
∴A(-3,0),B(-1,0)
将B(-1,0) 代入
中得![]()
∴抛物线的解析式为
,即![]()
图略
(3)设平行于
轴的直线为![]()
解方程组错误!不能通过编辑域代码创建对象。
得
,
(![]()
∴线段CD的长为![]()
∵以CD为直径的圆与
轴相切
据题意得![]()
∴![]()
解得 ![]()
∴圆心坐标为
和![]()
89.
(08四川巴中30题)(12分)30.已知:如图14,抛物线
与
轴交于点
,点
,与直线
相交于点
,点
,直线
与
轴交于点
.
(1)写出直线
的解析式.
(2)求
的面积.
(3)若点
在线段
上以每秒1个单位长度的速度从
向
运动(不与
重合),同时,点
在射线
上以每秒2个单位长度的速度从
向
运动.设运动时间为
秒,请写出
的面积
与
的函数关系式,并求出点
运动多少时间时,
的面积最大,最大面积是多少?
(08四川巴中30题解析)解:(1)在
中,令![]()
![]()
,![]()
,
··············································· 1分
又
点
在
上
![]()
![]()
的解析式为
·············································································· 2分
(2)由
,得
···················································· 4分
,![]()
,
······························································································· 5分
························································································· 6分
(3)过点
作
于点![]()
![]()
![]()
······························································································· 7分
·········································································································· 8分
由直线
可得:![]()
在
中,
,
,则![]()
,
······················································································· 9分
![]()
···················································································· 10分
····························································································· 11分
此抛物线开口向下,
当
时,![]()
当点
运动2秒时,
的面积达到最大,最大为
.···························· 12分
88.(08山东济宁26题)(12分)
![]()
中,
,
,
cm.长为1cm的线段
在
的边
上沿
方向以1cm/s的速度向点
运动(运动前点
与点
重合).过
分别作
的垂线交直角边于
两点,线段
运动的时间为
s.
(1)若
的面积为
,写出
与
的函数关系式(写出自变量
的取值范围);
(2)线段
运动过程中,四边形
有可能成为矩形吗?若有可能,求出此时
的值;若不可能,说明理由;
(3)
为何值时,以
为顶点的三角形与
相似?
(08山东济宁26题解析)解:(1)当点
在
上时,
,
.
.········································································ 2分
当点
在
上时,
.
.·················································· 4分
(2)
,
.
.
.········································································ 6分
由条件知,若四边形
为矩形,需
,即
,
.
当
s时,四边形
为矩形.································································· 8分
(3)由(2)知,当
s时,四边形
为矩形,此时
,
.··························································································· 9分
除此之外,当
时,
,此时
.
,
.
.····························· 10分
,
.
又
,
.········································ 11分
,
.
当
s或
s时,以
为顶点的三角形与
相似.··················· 12分
87.(08青海省卷28题)王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间
(单位:分钟)与学习收益量
的关系如图甲所示,用于回顾反思的时间
(单位:分钟)与学习收益量
的关系如图乙所示(其中
是抛物线的一部分,
为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.
(1)求王亮解题的学习收益量
与用于解题的时间
之间的函数关系式,并写出自变量
的取值范围;
(2)求王亮回顾反思的学习收益量
与用于回顾反思的时间
之间的函数关系式;
(3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?
(学习收益总量
解题的学习收益量
回顾反思的学习收益量)
(08青海省卷28题解析)解:(1)设
,
把
代入,得
.
.······································································································ (1分)
自变量
的取值范围是:
.···························································· (2分)
(2)当
时,
设
,···················································································· (3分)
把
代入,得
,
.
.································································· (5分)
当
时,
············································································································· (6分)
即
.
(3)设王亮用于回顾反思的时间为
分钟,学习效益总量为
,
则他用于解题的时间为
分钟.
当
时,
.························· (7分)
当
时,
.············································································ (8分)
当
时,
.····································································· (9分)
随
的增大而减小,
当
时,
.
综合所述,当
时,
,此时
.································ (10分)
即王亮用于解题的时间为26分钟,用于回顾反思的时间为4分钟时,学习收益总量最大.
······················································································································· (11分)
86.(08青海西宁28题)如图14,已知半径为1的
与
轴交于
两点,
为
的切线,切点为
,圆心
的坐标为
,二次函数
的图象经过
两点.
(1)求二次函数的解析式;
(2)求切线
的函数解析式;
(3)线段
上是否存在一点
,使得以
为顶点的三角形与
相似.若存在,请求出所有符合条件的点
的坐标;若不存在,请说明理由.
(08青海西宁28题解析)解:(1)
圆心
的坐标为
,
半径为1,
,
……1分
二次函数
的图象经过点
,
可得方程组
················································································ 2分
解得:![]()
二次函数解析式为
············································· 3分
(2)过点
作
轴,垂足为
.······························································· 4分
是
的切线,
为切点,
(圆的切线垂直于经过切点的半径).
在
中,![]()
为锐角,
···························· 5分
,
在
中,
.
.
点
坐标为
························································································· 6分
设切线
的函数解析式为
,由题意可知
,
······ 7分
切线
的函数解析式为
···································································· 8分
(3)存在.············································································································ 9分
①过点
作
轴,与
交于点
.可得
(两角对应相等两三角形相似)
,
············································ 10分
②过点
作
,垂足为
,过
点作
,垂足为
.
可得
(两角对应相等两三角开相似)
在
中,
,
,
在
中,
,
,
······································· 11分
符合条件的
点坐标有
,
······················································ 12分
85.(08内蒙古赤峰25题)(本题满分14分)
在平面直角坐标系中给定以下五个点
.
(1)请从五点中任选三点,求一条以平行于
轴的直线为对称轴的抛物线的解析式;
(2)求该抛物线的顶点坐标和对称轴,并画出草图;
(3)已知点
在抛物线的对称轴上,直线
过点
且垂直于对称轴.验证:以
为圆心,
为半径的圆与直线
相切.请你进一步验证,以抛物线上的点
为圆心
为半径的圆也与直线
相切.由此你能猜想到怎样的结论.
(08内蒙古赤峰25题解析)25.解:(1)设抛物线的解析式为
,
且过点
,
由
在
H .
则
.········································································································ (2分)
得方程组
,
解得
.
抛物线的解析式为
················ (4分)
(2)由
············· (6分)
得顶点坐标为
,对称轴为
.·········· (8分)
(3)①连结
,过点
作直线
的垂线,垂足为
,
则
.
在
中,
,
,
,
,
以
点为圆心,
为半径的
与直线
相切.····························· (10分)
②连结
过点
作直线
的垂线,垂足为
.过点
作
垂足为
,
则
.
在
中,
,
.
.
以
点为圆心
为半径的
与直线
相切.································ (12分)
③以抛物线上任意一点
为圆心,以
为半径的圆与直线
相切.····· (14分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com