题目列表(包括答案和解析)
25.(08江西南昌)24.如图,抛物线
相交于
两点.
(1)求
值;
(2)设
与
轴分别交于
两点(点
在点
的左边),
与
轴分别交于
两点(点
在点
的左边),观察
四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设
两点的横坐标分别记为
,若在
轴上有一动点
,且
,过
作一条垂直于
轴的直线,与两条抛物线分别交于C,D两点,试问当
为何值时,线段CD有最大值?其最大值为多少?
(08江西南昌24题解析)24.解:(1)
点
在抛物线
上,
,··························································································· 2分
解得
.··········································································································· 3分
(2)由(1)知
,
抛物线
,
.······· 5分
当
时,解得
,
.
点
在点
的左边,
,
.············ 6分
当
时,解得
,
.
点
在点
的左边,
,
.························································ 7分
,
,
点
与点
对称,点
与点
对称.······························································· 8分
(3)
.
抛物线
开口向下,抛物线
开口向上.················ 9分
根据题意,得![]()
.··············································· 11分
,
当
时,
有最大值
.··············································· 12分
说明:第(2)问中,结论写成“
,
四点横坐标的代数和为0”或“
”均得1分.
49.(08四川宜宾)24、(本小题满分12分)
已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.
(1) 求该抛物线的解析式;
(2) 若该抛物线与x轴的另一个交点为E. 求四边形ABDE的面积;
(3) △AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为
)
![]()
(08四川宜宾24题解析)24.解:( 1)由已知得:![]()
解得
c=3,b=2
∴抛物线的线的解析式为![]()
(2)由顶点坐标公式得顶点坐标为(1,4)
所以对称轴为x=1,A,E关于x=1对称,所以E(3,0)
设对称轴与x轴的交点为F
所以四边形ABDE的面积=![]()
=![]()
=![]()
=9
(3)相似
如图,BD=![]()
BE=![]()
DE=![]()
所以
,
即:
,所以
是直角三角形
所以
,且
,
所以
.
48.(08四川内江)(本题答案暂缺)21.(9分)如图,一次函数
的图象经过第一、二、三象限,且与反比例函数图象相交于
两点,与
轴交于点
,与
轴交于点
,
.且点
横坐标是点
纵坐标的2倍.
(1)求反比例函数的解析式;
(2)设点
横坐标为
,
面积为
,求
与
的函数关系式,并求出自变量的取值范围.
9.如图11,已知二次函数
的图像经过三点A
,B
,C
,它的顶点为M,又正比例函数
的图像于二次函数相交于两点D、E,且P是线段DE的中点。
⑴求该二次函数的解析式,并求函数顶点M的坐标;
⑵已知点E
,且二次函数的函数值大于正比例函数时,试根据函数图像求出符合条件的自变量
的取值范围;
⑶当
时,求四边形PCMB的面积
的最小值。
[参考公式:已知两点
,
,则线段DE的中点坐标为
]
47.(08四川泸州)(本题答案暂缺)四(本大题 10分)
46.(08四川凉山)25.(9分)如图,在
中
,
是
的中点,以
为直径的
交
的三边,交点分别是
点.
的交点为
,且
,
.
(1)求证:
.
(2)求
的直径
的长.
(3)若
,以
为坐标原点,
所在的直线分别为
轴和
轴,建立平面直角坐标系,求直线
的函数表达式.
(08四川凉山25题解析)25.(9分)
(1)连接![]()
是圆直径,
,即![]()
,
.················································································· 1分
.
在
中
,
.··························· 2分
(2)
是
斜边
的中点,
,
,
又由(1)知
,
.
又
,
与
相似······················································ 3分
············································································ 4分
又
,![]()
,
,
······································ 5分
设
,
,
,![]()
直径
.······························································································· 6分
(3)
斜边上中线
,![]()
![]()
在
中
,
,
······························ 7分
设直线
的函数表达式为
,
根据题意得
,![]()
解得![]()
直线
的函数解析式为
(其他方法参照评分)································· 9分
25.如图10,已知抛物线
经过点(1,-5)和(-2,4)
(1)求这条抛物线的解析式.
(2)设此抛物线与直线
相交于点A,B(点B在点A的右侧),平行于
轴的直线
与抛物线交于点M,与直线
交于点N,交
轴于点P,求线段MN的长(用含
的代数式表示).
(3)在条件(2)的情况下,连接OM、BM,是否存在
的值,使△BOM的面积S最大?若存在,请求出
的值,若不存在,请说明理由.
![]()
43.(08四川广安)(本题答案暂缺)七、解答题(本大题满分12分)
28. 如图,在平面直角坐标系xOy中,△OAB的顶点A的坐标为(10,0),顶点B在第一象限内,且
=3
,sin∠OAB=
.
(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的函数表达式;
(2)在(1)中,抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若将点O、点A分别变换为点Q( -2k ,0)、点R(5k,0)(k>1的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记△QNM的面积为
,△QNR的面积
,求
∶
的值.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com