题目列表(包括答案和解析)
84.
(08辽宁12市26题)(本题14分)26.如图16,在平面直角坐标系中,直线
与
轴交于点
,与
轴交于点
,抛物线
经过
三点.
(1)求过
三点抛物线的解析式并求出顶点
的坐标;
(2)在抛物线上是否存在点
,使
为直角三角形,若存在,直接写出
点坐标;若不存在,请说明理由;
(3)试探究在直线
上是否存在一点
,使得
的周长最小,若存在,求出
点的坐标;若不存在,请说明理由.
(08辽宁12市26题解析)
解:(1)
直线
与
轴交于点
,与
轴交于点
.
,
························································································· 1分
点
都在抛物线上,
![]()
抛物线的解析式为
························································ 3分
顶点
······························································································· 4分
(2)存在··············································································································· 5分
············································································································· 7分
············································································································ 9分
(3)存在·············································································································· 10分
理由:
解法一:
延长
到点
,使
,连接
交直线
于点
,则点
就是所求的点.
····················································································· 11分
过点
作
于点
.
点在抛物线
上,![]()
在
中,
,
,
,
在
中,
,
,
,
··············································· 12分
设直线
的解析式为![]()
解得![]()
································································································ 13分
解得
![]()
在直线
上存在点
,使得
的周长最小,此时
.··· 14分
解法二:
过点
作
的垂线交
轴于点
,则点
为点
关于直线
的对称点.连接
交
于点
,则点
即为所求.················································································ 11分
过点
作
轴于点
,则
,
.
,![]()
![]()
同方法一可求得
.
在
中,
,
,可求得
,
为线段
的垂直平分线,可证得
为等边三角形,
垂直平分
.
即点
为点
关于
的对称点.
············································· 12分
设直线
的解析式为
,由题意得
解得![]()
································································································ 13分
解得
![]()
在直线
上存在点
,使得
的周长最小,此时
.··· 14分
83.
(08辽宁沈阳26题)(本题14分)26.如图所示,在平面直角坐标系中,矩形
的边
在
轴的负半轴上,边
在
轴的正半轴上,且
,
,矩形
绕点
按顺时针方向旋转
后得到矩形
.点
的对应点为点
,点
的对应点为点
,点
的对应点为点
,抛物线
过点
.
(1)判断点
是否在
轴上,并说明理由;
(2)求抛物线的函数表达式;
(3)在
轴的上方是否存在点
,点
,使以点
为顶点的平行四边形的面积是矩形
面积的2倍,且点
在抛物线上,若存在,请求出点
,点
的坐标;若不存在,请说明理由.
(08辽宁沈阳26题解析)解:(1)点
在
轴上················································· 1分
理由如下:
连接
,如图所示,在
中,
,
,![]()
,![]()
由题意可知:![]()
![]()
点
在
轴上,
点
在
轴上.········································································· 3分
(2)过点
作
轴于点![]()
,![]()
在
中,
,![]()
点
在第一象限,
点
的坐标为
·························································································· 5分
由(1)知
,点
在
轴的正半轴上
点
的坐标为![]()
点
的坐标为
···························································································· 6分
抛物线
经过点
,
![]()
由题意,将
,
代入
中得
解得![]()
所求抛物线表达式为:
······················································· 9分
(3)存在符合条件的点
,点
.········································································· 10分
理由如下:
矩形
的面积![]()
以
为顶点的平行四边形面积为
.
由题意可知
为此平行四边形一边,
又![]()
边上的高为2··································································································· 11分
依题意设点
的坐标为![]()
点
在抛物线
上
![]()
解得,
,![]()
,![]()
以
为顶点的四边形是平行四边形,
![]()
,
,
当点
的坐标为
时,
点
的坐标分别为
,
;
当点
的坐标为
时,
点
的坐标分别为
,
.··············································· 14分
82.(08广东肇庆25题)(本小题满分10分)
已知点A(a,
)、B(2a,y
)、C(3a,y
)都在抛物线
上.
(1)求抛物线与x轴的交点坐标;
(2)当a=1时,求△ABC的面积;
(3)是否存在含有
、y
、y
,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.
(08广东肇庆25题解析)(本小题满分10分)
解:(1)由5
=0,·············································································· (1分)
得
,
.·················································································· (2分)
∴抛物线与x轴的交点坐标为(0,0)、(
,0).······································· (3分)
(2)当a=1时,得A(1,17)、B(2,44)、C(3,81),······························ (4分)
分别过点A、B、C作x轴的垂线,垂足分别为D、E、F,则有
=S
-
-
···················································· (5分)
=
-
-
···································· (6分)
=5(个单位面积)········································································ (7分)
(3)如:
. ········································································· (8分)
事实上,
=45a2+36a.
3(
)=3[5×(2a)2+12×2a-(5a2+12a)] =45a2+36a.············ (9分)
∴
. ···················································································· (10分)
81.(08广东茂名25题)(本题满分10分)
如图,在平面直角坐标系中,抛物线
=-![]()
![]()
+![]()
+
经过A(0,-4)、B(![]()
,0)、 C(![]()
,0)三点,且![]()
-![]()
=5.
(1)求
、
的值;(4分)
(2)在抛物线上求一点D,使得四边形BDCE是以BC为对 角线的菱形;(3分)
(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由.(3分)
解:
(08广东茂名25题解析)解:(1)解法一:
∵抛物线
=-![]()
![]()
+![]()
+
经过点A(0,-4),
∴
=-4 ……1分
又由题意可知,![]()
、![]()
是方程-![]()
![]()
+![]()
+
=0的两个根,
∴![]()
+![]()
=![]()
,
![]()
![]()
![]()
=-![]()
=6··································································· 2分
由已知得(![]()
-![]()
)
=25
又(![]()
-![]()
)
=(![]()
+![]()
)
-4![]()
![]()
![]()
=![]()
![]()
-24
∴ ![]()
![]()
-24=25
解得
=±
··········································································································· 3分
当
=
时,抛物线与
轴的交点在
轴的正半轴上,不合题意,舍去.
∴
=-
. ·········································································································· 4分
解法二:∵![]()
、![]()
是方程-![]()
![]()
+![]()
+c=0的两个根,
即方程2![]()
-3![]()
+12=0的两个根.
∴
=
,··········································································· 2分
∴![]()
-![]()
=
=5,
解得
=±
······························································································· 3分
(以下与解法一相同.)
(2)∵四边形BDCE是以BC为对角线的菱形,根据菱形的性质,点D必在抛物线的对称轴上, 5分
又∵
=-![]()
![]()
-![]()
-4=-
(
+
)
+
································· 6分
∴抛物线的顶点(-
,
)即为所求的点D.······································· 7分
(3)∵四边形BPOH是以OB为对角线的菱形,点B的坐标为(-6,0),
根据菱形的性质,点P必是直线
=-3与
抛物线
=-![]()
![]()
-![]()
-4的交点, ···························································· 8分
∴当
=-3时,
=-
×(-3)
-
×(-3)-4=4,
∴在抛物线上存在一点P(-3,4),使得四边形BPOH为菱形. ·················· 9分
四边形BPOH不能成为正方形,因为如果四边形BPOH为正方形,点P的坐标只能是(-3,3),但这一点不在抛物线上.······································································································· 10分
有理数的加减,打破了小学数学中的加与减的严格界限,把加、减统一成加法。这都是由于引进了负数,也正是由于引进了负数,小学时我们所熟悉的许多结论在有理数范围内都不一定成立了。下面的几个问题作为本文的结尾,请同学们认真思考并做出回答:
(1)“两个数相加,和一定大于或等于各个加数”吗?
(2)“两个数相减,差一定小于或等于被减数”吗?
(3)“一个数的3倍一定大于这个数的2倍”吗?
在初次进行有理数的加减运算时,首先要分清“+”、“-”号是运算符号还是性质符号。刚开始时,最好把性质符号用括号括起来,使性质符号与运算符号分开。如:正2加上负3,应写作
,不能写成“
”。其次,要牢记运算的法则。第三,减法统一变加法。因为学了相反数后,减去一个数,等于加上这个数的相反数。这是有理数的减法法则,它把减法变成了加法。
在小学数学中,“+”、“-”表示加号和减号。学习有理数后,“+”与“-”还表示正号与负号。
我们通常把四则运算中的加(+)、减(-)、乘(×)、除(÷)号叫运算符号;把表示正负数的正(+)、负(-)号叫性质符号。另外,负(-)号除了表示上述两种意义外,还表示一个数的相反数。如:-5可表示为5的相反数,而
,表示
的相反数。
例7. 已知
,试求
的值。
剖析:欲求
的值,只有先求得x、y的值。为此必须逆用幂的运算法则,把已知等式化为同底数幂,由指数相等列出方程组求解。
解:把已知等式化为同底数幂,得:
![]()
![]()
解之得:![]()
∴原式![]()
4. 用于比较大小
例6. 比较
的大小。
解:![]()
![]()
显然![]()
![]()
评注:例4中如果按有理数运算顺序计算是十分繁杂的,而逆用法则却极为方便;例5通过逆用法则,也简便获解;例3、例6直接求解,很难进行,但逆用幂的运算法则,问题就迎刃而解,足见适时逆用法则的巨大威力。
3. 用于求值
例5. 已知
,求
的值。
解:原式![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com