题目列表(包括答案和解析)
5、(2011•苏州)有一组数椐:3,4,5,6,6,则下列四个结论中正确的是( )
A、这组数据的平均数、众数、中位数分别是4.8,6,6 B、这組数据的平均数、众数、中位数分别是5,5,5
C、这组数据的平均数、众数、中位数分别是4.8,6,5 D、这组数据的平均数、众数、中位数分别是5,6,6
考点:众数;算术平均数;中位数。
专题:计算题。
分析:要求平均数只要求出数据之和再除以总个数即可;对于众数可由数据中出现次数最多的数写出;对于中位数,因为题中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的一个数.
解答:解:一组数椐:3,4,5,6,6的平均数=(3+4+5+6+6)÷5=24÷5=4.8.
6出现的次数最多,故众数是6.
按从小到大的顺序排列,最中间的一个数是5,故中位数为:5.
故选C.
点评:本题考查平均数、中位数和众数的概念.一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数;在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.
4、(2011•苏州)若m•23=26,则m等于( )
A、2 B、4
C、6 D、8
考点:同底数幂的除法。
专题:计算题。
分析:根据乘除法的关系,把等式变形,根据同底数幂的除法,底数不变指数相减.
解答:解;m=26÷23=26﹣3=23=8,
故选:D,
点评:此题主要考查了同底数幂的除法,题目比较基础,一定要记准法则才能做题.
3、(2010•清远)地球上的海洋面积约为361000000千米2,将361000000这个数用科学记数法表示为( )
A、3.61×108 B、3.61×107
C、361×107 D、0.361×109
考点:科学记数法-表示较大的数。
专题:应用题。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.
解答:解:将361 000 000用科学记数法表示为3.61×108.
故选A.
点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2、(2011•苏州)△ABC的内角和为( )
A、180° B、360°
C、540° D、720°
考点:三角形内角和定理。
分析:根据三角形的内角和定理直接得出答案.
解答:解:三角形的内角和定理直接得出:△ABC的内角和为180°.
故选A.
点评:此题主要考查了三角形的内角和定理,此题比较简单注意正确记忆三角形内角和定理.
1、(2011•苏州)2×(﹣
)的结果是( )
A、﹣4 B、﹣1
C、
D、![]()
考点:有理数的乘法。
专题:计算题。
分析:根据有理数乘法法则:异号得负,并把绝对值相乘来计算.
解答:解:2×(﹣
)=﹣(2×
)=﹣1.
故选B.
点评:考查了有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.
25.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.
⑴求抛物线的函数表达式;
⑵求直线BC的函数表达式;
⑶点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.
①当线段PQ=
AB时,求tan∠CED的值;
②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.
温馨提示:考生可以根据第⑶问的题意,在图中补出图形,以便作答.
![]()
![]()
24.已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.
⑴如图1,当点D在边BC上时,
求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;
⑵如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;
⑶如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.
![]()
![]()
23.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤11).
⑴用含x的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为_________元.
⑵求今年这种玩具的每件利润y元与x之间的函数关系式.
⑶设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?
注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.
22.小刘同学在课外活动中观察吊车的工作过程,绘制了如图所示的平面图形.已知吊车吊臂的支点O距离地面的高OO′=2米.当吊臂顶端由A点抬升至A′点(吊臂长度不变)时,地面B处的重物(大小忽略不计)被吊至B′处,紧绷着的吊缆A′B′=AB.AB垂直地面O′B于点B,A′B′垂直地面O′B于点C,吊臂长度OA′=OA=10米,且cosA=
,sinA′=
.
⑴求此重物在水平方向移动的距离BC;
⑵求此重物在竖直方向移动的距离B′C.(结果保留根号)
20.某班数学兴趣小组收集了本市4月份30天的日最高气温的数据,经过统计分析获得了两条信息和一个统计表
信息1 4月份日最高气温的中位数是15.5℃;
信息2 日最高气温是17℃的天数比日最高气温是18℃的天数多4天.
4月份日最高气温统计表
|
气温℃ |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
|
天数/天 |
2 |
3 |
※ |
5 |
4 |
※ |
※ |
2 |
2 |
3 |
请根据上述信息回答下列问题:
⑴4月份最高气温是13℃的有________天,16℃的有_______天,17℃的有__________天.
⑵4月份最高气温的众数是________℃,极差是_________℃。
21.如图,点A、B在⊙O上,直线AC是⊙O的切线,OD⊥OB,连接AB交OC于点D.
⑴求证:AC=CD
⑵若AC=2,AO=
,求OD的长度.
![]()
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com