0  165089  165097  165103  165107  165113  165115  165119  165125  165127  165133  165139  165143  165145  165149  165155  165157  165163  165167  165169  165173  165175  165179  165181  165183  165184  165185  165187  165188  165189  165191  165193  165197  165199  165203  165205  165209  165215  165217  165223  165227  165229  165233  165239  165245  165247  165253  165257  165259  165265  165269  165275  165283  447090 

3.已知α、β是不同的两个平面,直线,直线,命题pab没有公共点;命题q,则p是q的                   (   )

    A.充分不必要的条件             B.必要不充分的条件

   C.充要条件               D.既不充分也不必要的条件

试题详情

2.若,且,则=                     (   )

    A.-          B.           C.            D.-

试题详情

1.等于                                                   (   )

    A.      B.       C.    D.

试题详情

22.(本小题满分14分)数列的各项均为正数,为其前项和,对于任意,总有成等差数列.

  (1)求数列的通项公式;

  (2)若b=a 4(), B是数列{b}的前项和,求证:不等式 B≤4B,对任意皆成立.

  (3)令

试题详情

21.(本小题满分12分) 已知:函数

   (1)若上是增函数,求实数a的取值范围;

  (2)若方程=((a>0)至多有两个解,求实数a的取值范围.

试题详情

20.(本小题满分12分)已知曲线C

  (1)由曲线C上任一点E向轴作垂线,垂足为F,动点P满足,所成的比为,求点P的轨迹. P的轨迹可能是圆吗?请说明理由;

  (2)如果直线l的斜率为,且过点M(0,),直线l交曲线C于A、B两点,又,求曲线C的方程.

试题详情

19.(本小题满分12分)如图,直三棱柱A1B1C1-ABC中,C1C=CB=CA=2,AC⊥CB. D、E分别为棱C1C、B1C1的中点.

  (1)求与平面A1C1CA所成角的大小;

  (2)求二面角B-A1D-A的大小;

  (3)在线段AC上是否存在一点F,使得EF⊥平面A1BD?若存在,确定其位置并证明结论;若不存在,说明理由.

试题详情

18.(本小题满分12分)某工厂组织工人参加上岗测试,每位测试者最多有三次机会,一旦某次测试通过,便可上岗工作,不再参加以后的测试;否则就一直测试到第三次为止.设每位工人每次测试通过的概率依次为0.2,0.4,0.5.

  (1)求某位工人经过两次测试后上岗的概率;

  (2)若有4位工人参加这次测试,求恰有2人通过测试的概率.

试题详情

17.(本小题满分12分)已知,函数.

  (1)求的单调递增区间;

  (2)若,求cosx的值.

试题详情

16.在△ABC中,AB =3,AC =5,∠BAC =120°,其所在平面外一点PABC三个顶点的距离都是14,则P点到直线BC的距离为       .

试题详情


同步练习册答案