考点1、碰撞作用
碰撞类问题应注意:⑴由于碰撞时间极短,作用力很大,因此动量守恒;⑵动能不增加,碰后系统总动能小于或等于碰前总动能,即
;⑶速度要符合物理情景:如果碰前两物体同向运动,则后面的物体速度一定大于前面物体的速度,即
,碰撞后,原来在前面的物体速度一定增大,且
;如果两物体碰前是相向运动,则碰撞后,两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。
例1A、B两球在光滑水平面上沿同一直线运动,A球动量为pA=5kg·m/s,B球动量为pB=7kg·m/s,当A球追上B球时发生碰撞,则碰后A、B两球的动量可能是:( )
A.pA=6kg·m/s、pB=6kg·m/s B.pA=3kg·m/s、pB=9kg·m/s
C.pA=-2kg·m/s、pB=14kg·m/s D.pA=5kg·m/s、pB=17kg·m/s
解析:动量守恒四个选项都满足,那么第二个判断依据是速度情景:A的动量不可能原方向增大,A错;第三个判断依据是能量关系:碰后系统总动能只能小于等于碰前总动能。计算得BC正确D错。碰前总动能为
,由于
,A要追上B,则有
,即
.对B项,有
,得
,满足
,B正确;对C,有
,
,同样满足
,C正确.
答案:BC
点拨:判断的优先顺序为:动量守恒→速度情景→动能关系,动量守恒最容易判断,其次是速度情景,动能关系要通过计算才能作结论,简捷方法是先比较质量关系,再比较动量的平方,如果两物体质量相等,则可直接比较碰撞前后动量的平方和。
考点2、爆炸和反冲
⑴爆炸时内力远大于外力,系统动量守恒;
⑵由于有其它形式的能转化为动能(机械能),系统动能增大。
例22007年10月24日18时05分,中国首枚绕月探测卫星“嫦娥一号”顺利升空,24日18时29分,搭载 “嫦娥一号”的“长征三号甲”火箭成功实施“星箭分离”。此次采用了爆炸方式分离星箭,爆炸产生的推力将置于箭首的卫星送入预定轨道运行。为了保证在爆炸时卫星不致于由于受到过大冲击力而损坏,分离前关闭火箭发动机,用“星箭分离冲击传感器”测量和控制爆炸作用力,使星箭分离后瞬间火箭仍沿原方向飞行,关于星箭分离,下列说法正确的是( )
A.由于爆炸,系统总动能增大,总动量增大
B.卫星的动量增大,火箭的动量减小,系统动量守恒
C.星箭分离后火箭速度越大,系统的总动能越大
D.若爆炸作用力持续的时间一定,则星箭分离后火箭速度越小,卫星受到的冲击力越大
解析:由于爆炸,火药的化学能转化为系统动能,因此系统总动能增大。爆炸力远大于星箭所受外力(万有引力),系统动量守恒,卫星在前,动量增大,火箭仍沿原方向运动,动量则一定减小,A错B对;
,又
,分离后总动能
,联立解得
,式中v是星箭分离前的共同速度,依题意
,即
,因此火箭速度v2越大,分离后系统总动能越小,(也可用极限法直接判断:假设星箭分离后星箭速度仍相等,则动能不变,火药释放的能量为0,系统总动能为最小)C错;爆炸力为一对相互作用的内力,因此大小相等、作用时间相同,卫星和火箭受到的爆炸力的冲量大小一定相等,分离后火箭速度越小,则火箭动量的变化量越大,所受爆炸力的冲量越大,则卫星受到的冲量(与火箭受到的爆炸力的冲量等大反向)越大,相互作用时间一定,则卫星受到的冲击力越大,D正确。。
答案:BD
点拨:注意提取有效解题信息,把握关键字句,如“置于箭首的卫星”、“星箭分离后瞬间火箭仍沿原方向飞行”等,结合爆炸特点和物理情景判断解题。
考点3、两个定理的结合
例3:如图所示,质量m1为4kg的木板A放在水平面C上,木板与水平面间的动摩擦因数μ=0.24,木板右端放着质量m2为1.0kg的小物块B(视为质点),它们均处于静止状态.木板突然受到水平向右的
的瞬时冲量I作用开始运动,当小物块滑离木板时,木板的动能
为8.0J,小物块的动能
为0.50J,重力加速度取10m/s2,求:
(1)瞬时冲量作用结束时木板的速度V0.
(2)木板的长度L
解析:(1)设水平向右为正方向,有
① 代入数据解得
②
(2)设A对B、B对A、C对A的滑动摩擦力的大小分别为
、
和
,B在A上滑行的时间为t,B离开A时A和B的速度分别为
和
,有
③
④ 其中
,
⑤
设A、B相对于C的位移大小分别为
和
,有
⑥
⑦
动量与动能之间的关系为
⑧
⑨
木板的长度
⑩
代入数据得L=0.50m
点拨:涉及动量定理和动能定理综合应用的问题时,要注意分别从合力对时间、合力对位移的累积作用效果两个方面分析物体动量和动能的变化,同时应注意动量和动能两个量之间的关系.
考点4、碰撞与圆周运动、平抛运动的结合
例4(2008年北京)有两个完全相同的小滑块A和B,A沿光滑水平面以速度v0与静止在平面边缘O点的B发生正碰,碰撞中无机械能损失。碰后B运动的轨迹为OD曲线,如图所示。(1)已知滑块质量为m,碰撞时间为
,求碰撞过程中A对B平均冲力的大小。(2)为了研究物体从光滑抛物线轨道顶端无初速下滑的运动,特制做一个与B平抛轨道完全相同的光滑轨道,并将该轨道固定在与OD曲线重合的位置,让A沿该轨道无初速下滑(经分析,A下滑过程中不会脱离轨道)。
a.分析A沿轨道下滑到任意一点的动量pA与B平抛经过该点的动量pB的大小关系;
b.在OD曲线上有一M点,O和M两点连线与竖直方向的夹角为45°。求A通过M点时的水平分速度和竖直分速度。
解析:(1)滑动A与B正碰,满足:mvA-mvB=mv0
由①②,解得vA=0, vB=v0,
根据动量定理,滑块B满足 F·
t=mv0
解得 ![]()
(2)a.设任意点到O点竖直高度差为d,A、B由O点分别运动至该点过程中,只有重力做功,所以机械能守恒。选该任意点为势能零点,有
EA=mgd,EB= mgd+![]()
由于p=
,有![]()
即 PA<PB,A下滑到任意一点的动量总和是小于B平抛经过该点的动量。
b.以O为原点,建立直角坐标系xOy,x轴正方向水平向右,y轴正方向竖直向下,则对B有::x=v0t,y=
gt2
B的轨迹方程 y=![]()
在M点x=y,所以
因为A、B的运动轨迹均为OD曲线,故在任意一点,两者速度方向相同。设B水平和竖直分速度大小分别为
和
,速率为vB;A水平和竖直分速度大小分别为
和
,速率为vA,则:
B做平抛运动,故
对A由机械能守恒得vA=
由由以上三式得 ![]()
将
代入得:![]()
点拨:碰撞过程中的动量与能量关系,碰撞后与平抛运动的规律相结合是近几年高考的热点,复习时应加强这方面的训练。
3.应注意分析过程的转折点,如运动规律中的碰撞、爆炸等相互作用,它是不同物理过程的交汇点,也是物理量的联系点,一般涉及能量变化过程,例如碰撞中动能可能不变,也可能有动能损失,而爆炸时系统动能会增加.
2.解题时要抓特征扣条件,认真分析研究对象的过程特征,若只有重力、系统内弹力做功就看是否要应用机械能守恒定律;若涉及其他力做功,要考虑能否应用动能定理或能的转化关系建立方程;若过程满足合外力为零,或者内力远大于外力,判断是否要应用动量守恒;若合外力不为零,或冲量涉及瞬时作用状态,则应该考虑应用动量定理还是牛顿定律.
1.独立理清两条线:一是力的时间积累--冲量--动量定理--动量守恒;二是力的空间移位积累--功--动能定理--机械能守恒--能的转化与守恒.把握这两条主线的结合部:系统。即两个或两个以上物体组成相互作用的物体系统。动量和能量的综合问题通常是以物体系统为研究对象的,这是因为动量守恒定律只对相互作用的系统才具有意义。
![]()
动量、能量思想是贯穿整个物理学的基本思想,应用动量和能量的观点求解的问题,是力学三条主线中的两条主线的结合部,是中学物理中涉及面最广,灵活性最大,综合性最强,内容最丰富的部分,以两大定律与两大定理为核心构筑了力学体系,能够渗透到中学物理大部分章节与知识点中。将各章节知识不断分化,再与动量能量问题进行高层次组合,就会形成综合型考查问题,全面考查知识掌握程度与应用物理解决问题能力,是历年高考热点考查内容,而且命题方式多样,题型全,分量重,小到选择题,填空题,大到压轴题,都可能在此出题.考查内容涉及中学物理的各个版块,因此综合性强.主要综合考查动能定理、机械能守恒定律、能量守恒定律、动量定理和动量守恒定律的运用等.相关试题可能通过以弹簧模型、滑动类模型、碰撞模型、反冲等为构件的综合题形式出现,也有可能综合到带电粒子的运动及电磁感应之中加以考查.
18.
如图18所示,磁感应强度B=0.2T的匀强磁场中有一折成30°角的足够长的金属导轨
,导轨平面垂直于磁场方向。一条长度
的直导线MN垂直ob方向放置在轨道上并接触良好。当MN以v=4m/s从导轨O点开始向右平动时,若所有导线单位长度的电阻
。求:经过时间
后:
(1)闭合回路的感应电动势的瞬时值?
(2)闭合回路中的电流大小和方向?
(3)MN两端的电压![]()
17.
如图17所示,平行的光滑金属导轨EF和GH相距L,处于同一竖直平面内,GE间解有阻值为R的电阻,轻质金属杆ab长为2L,近贴导轨数值放置,离b端0.5L处固定有质量为m的小球,整个装置处于磁感应强度为B并与导轨平面垂直的匀强磁场中,当ab杆由静止开始紧贴导轨绕b端向右倒下至水平位置时,球的速度为v,若导轨足够长,导轨及金属杆电阻不计,求在此过程中:
(1)通过电阻R的电量;
(2)R中通过的最大电流强度.
16.
在磁感应强度为B=0.4 T的匀强磁场中放一个半径r0=50 cm的圆形导轨,上面搁有互相垂直的两根导体棒,一起以角速度ω=103 rad/s逆时针匀速转动。圆导轨边缘和两棒中央通过电刷与外电路连接,若每根导体棒的有效电阻为R0=0.8 Ω,外接电阻R=3.9 Ω,如图16所示,求:
(1)每半根导体棒产生的感应电动;
(2)当电键S接通和断开时两电表示数(电压表和电流表为理想电表).
15.
如图15所示,光滑的平行导轨P、Q相距l=1m,处在同一水平面中,导轨左端接有如图所示的电路,其中水平放置的平行板电容器C两极板间距离d =10mm,定值电阻R1=R3=8Ω,R2=2Ω,导轨电阻不计,磁感应强度B=0.4T的匀强磁场竖直向下穿过导轨平面,当金属棒ab沿导轨向右匀速运动(开关S断开,金属棒电阻也不计)时,电容器两极板之间质量m=1×10-14kg,带电荷量q = -1×10-15C的粒子恰好静止不动;当S闭合时,粒子以加速度a=7m/s2向下做匀加速运动,取g=10m/s2,求:
(1)金属棒ab运动的速度多大?电阻多大?
(2)S闭合后,使金属棒ab做匀速运动的外力的功率多大?
14.
如图14所示,电源电动势E=4.5V,内阻r=1
,滑动变阻器总阻值
=12
,小灯泡电阻
=12
不变,
=2.5
。当滑片P位于中点,S闭合时,灯泡恰能正常发光,求:
(1)流过小灯泡的电流;
(2)S断开时,小灯泡能否正常发光?如果它正常发光,滑片P应如何移动?
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com