0  246544  246552  246558  246562  246568  246570  246574  246580  246582  246588  246594  246598  246600  246604  246610  246612  246618  246622  246624  246628  246630  246634  246636  246638  246639  246640  246642  246643  246644  246646  246648  246652  246654  246658  246660  246664  246670  246672  246678  246682  246684  246688  246694  246700  246702  246708  246712  246714  246720  246724  246730  246738  447090 

考点1、碰撞作用

碰撞类问题应注意:⑴由于碰撞时间极短,作用力很大,因此动量守恒;⑵动能不增加,碰后系统总动能小于或等于碰前总动能,即;⑶速度要符合物理情景:如果碰前两物体同向运动,则后面的物体速度一定大于前面物体的速度,即,碰撞后,原来在前面的物体速度一定增大,且;如果两物体碰前是相向运动,则碰撞后,两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。

例1AB两球在光滑水平面上沿同一直线运动,A球动量为pA=5kg·m/s,B球动量为pB=7kg·m/s,当A球追上B球时发生碰撞,则碰后AB两球的动量可能是:(   )

A.pA=6kg·m/s、pB=6kg·m/s   B.pA=3kg·m/s、pB=9kg·m/s

C.pA=-2kg·m/s、pB=14kg·m/s   D.pA=5kg·m/s、pB=17kg·m/s

解析:动量守恒四个选项都满足,那么第二个判断依据是速度情景:A的动量不可能原方向增大,A错;第三个判断依据是能量关系:碰后系统总动能只能小于等于碰前总动能。计算得BC正确D错。碰前总动能为 ,由于A要追上B,则有,即.对B项,有,得,满足,B正确;对C,有,,同样满足,C正确.

答案:BC

点拨:判断的优先顺序为:动量守恒→速度情景→动能关系,动量守恒最容易判断,其次是速度情景,动能关系要通过计算才能作结论,简捷方法是先比较质量关系,再比较动量的平方,如果两物体质量相等,则可直接比较碰撞前后动量的平方和。

考点2、爆炸和反冲 

⑴爆炸时内力远大于外力,系统动量守恒;

⑵由于有其它形式的能转化为动能(机械能),系统动能增大。

例22007年10月24日18时05分,中国首枚绕月探测卫星“嫦娥一号”顺利升空,24日18时29分,搭载 “嫦娥一号”的“长征三号甲”火箭成功实施“星箭分离”。此次采用了爆炸方式分离星箭,爆炸产生的推力将置于箭首的卫星送入预定轨道运行。为了保证在爆炸时卫星不致于由于受到过大冲击力而损坏,分离前关闭火箭发动机,用“星箭分离冲击传感器”测量和控制爆炸作用力,使星箭分离后瞬间火箭仍沿原方向飞行,关于星箭分离,下列说法正确的是(  )

A.由于爆炸,系统总动能增大,总动量增大

B.卫星的动量增大,火箭的动量减小,系统动量守恒

C.星箭分离后火箭速度越大,系统的总动能越大

D.若爆炸作用力持续的时间一定,则星箭分离后火箭速度越小,卫星受到的冲击力越大

解析:由于爆炸,火药的化学能转化为系统动能,因此系统总动能增大。爆炸力远大于星箭所受外力(万有引力),系统动量守恒,卫星在前,动量增大,火箭仍沿原方向运动,动量则一定减小,A错B对;,又,分离后总动能,联立解得,式中v是星箭分离前的共同速度,依题意,即,因此火箭速度v2越大,分离后系统总动能越小,(也可用极限法直接判断:假设星箭分离后星箭速度仍相等,则动能不变,火药释放的能量为0,系统总动能为最小)C错;爆炸力为一对相互作用的内力,因此大小相等、作用时间相同,卫星和火箭受到的爆炸力的冲量大小一定相等,分离后火箭速度越小,则火箭动量的变化量越大,所受爆炸力的冲量越大,则卫星受到的冲量(与火箭受到的爆炸力的冲量等大反向)越大,相互作用时间一定,则卫星受到的冲击力越大,D正确。。

答案:BD

点拨:注意提取有效解题信息,把握关键字句,如“置于箭首的卫星”、“星箭分离后瞬间火箭仍沿原方向飞行”等,结合爆炸特点和物理情景判断解题。

考点3、两个定理的结合

例3:如图所示,质量m1为4kg的木板A放在水平面C上,木板与水平面间的动摩擦因数μ=0.24,木板右端放着质量m2为1.0kg的小物块B(视为质点),它们均处于静止状态.木板突然受到水平向右的的瞬时冲量I作用开始运动,当小物块滑离木板时,木板的动能为8.0J,小物块的动能为0.50J,重力加速度取10m/s2,求:

(1)瞬时冲量作用结束时木板的速度V0.

(2)木板的长度L

解析:(1)设水平向右为正方向,有①   代入数据解得

(2)设A对B、B对A、C对A的滑动摩擦力的大小分别为,B在A上滑行的时间为t,B离开A时A和B的速度分别为,有

④ 其中

设A、B相对于C的位移大小分别为,有

动量与动能之间的关系为 ⑧ 

木板的长度⑩       代入数据得L=0.50m

点拨:涉及动量定理和动能定理综合应用的问题时,要注意分别从合力对时间、合力对位移的累积作用效果两个方面分析物体动量和动能的变化,同时应注意动量和动能两个量之间的关系.

考点4、碰撞与圆周运动、平抛运动的结合 

例4(2008年北京)有两个完全相同的小滑块ABA沿光滑水平面以速度v0与静止在平面边缘O点的B发生正碰,碰撞中无机械能损失。碰后B运动的轨迹为OD曲线,如图所示。(1)已知滑块质量为m,碰撞时间为,求碰撞过程中A对B平均冲力的大小。(2)为了研究物体从光滑抛物线轨道顶端无初速下滑的运动,特制做一个与B平抛轨道完全相同的光滑轨道,并将该轨道固定在与OD曲线重合的位置,让A沿该轨道无初速下滑(经分析,A下滑过程中不会脱离轨道)。

a.分析A沿轨道下滑到任意一点的动量pAB平抛经过该点的动量pB的大小关系;

b.在OD曲线上有一M点,OM两点连线与竖直方向的夹角为45°。求A通过M点时的水平分速度和竖直分速度。

解析:(1)滑动AB正碰,满足:mvA-mvB=mv0      

   

由①②,解得vA=0, vB=v0,

根据动量定理,滑块B满足     F·t=mv0

解得      

(2)a.设任意点到O点竖直高度差为dA、BO点分别运动至该点过程中,只有重力做功,所以机械能守恒。选该任意点为势能零点,有

EA=mgd,EB= mgd+

由于p=,有

即  PA<PBA下滑到任意一点的动量总和是小于B平抛经过该点的动量。

b.以O为原点,建立直角坐标系xOy,x轴正方向水平向右,y轴正方向竖直向下,则对B有::x=v0t,y=gt2

B的轨迹方程    y=

M点x=y所以                

因为A、B的运动轨迹均为OD曲线,故在任意一点,两者速度方向相同。设B水平和竖直分速度大小分别为,速率为vBA水平和竖直分速度大小分别为,速率为vA,则:        

B做平抛运动,故  

A由机械能守恒得vA=       

由由以上三式得

代入得:

点拨:碰撞过程中的动量与能量关系,碰撞后与平抛运动的规律相结合是近几年高考的热点,复习时应加强这方面的训练。

试题详情

3.应注意分析过程的转折点,如运动规律中的碰撞、爆炸等相互作用,它是不同物理过程的交汇点,也是物理量的联系点,一般涉及能量变化过程,例如碰撞中动能可能不变,也可能有动能损失,而爆炸时系统动能会增加.

试题详情

2.解题时要抓特征扣条件,认真分析研究对象的过程特征,若只有重力、系统内弹力做功就看是否要应用机械能守恒定律;若涉及其他力做功,要考虑能否应用动能定理或能的转化关系建立方程;若过程满足合外力为零,或者内力远大于外力,判断是否要应用动量守恒;若合外力不为零,或冲量涉及瞬时作用状态,则应该考虑应用动量定理还是牛顿定律.

试题详情

1.独立理清两条线:一是力的时间积累--冲量--动量定理--动量守恒;二是力的空间移位积累--功--动能定理--机械能守恒--能的转化与守恒.把握这两条主线的结合部:系统。即两个或两个以上物体组成相互作用的物体系统。动量和能量的综合问题通常是以物体系统为研究对象的,这是因为动量守恒定律只对相互作用的系统才具有意义。

试题详情

动量、能量思想是贯穿整个物理学的基本思想,应用动量和能量的观点求解的问题,是力学三条主线中的两条主线的结合部,是中学物理中涉及面最广,灵活性最大,综合性最强,内容最丰富的部分,以两大定律与两大定理为核心构筑了力学体系,能够渗透到中学物理大部分章节与知识点中。将各章节知识不断分化,再与动量能量问题进行高层次组合,就会形成综合型考查问题,全面考查知识掌握程度与应用物理解决问题能力,是历年高考热点考查内容,而且命题方式多样,题型全,分量重,小到选择题,填空题,大到压轴题,都可能在此出题.考查内容涉及中学物理的各个版块,因此综合性强.主要综合考查动能定理、机械能守恒定律、能量守恒定律、动量定理和动量守恒定律的运用等.相关试题可能通过以弹簧模型、滑动类模型、碰撞模型、反冲等为构件的综合题形式出现,也有可能综合到带电粒子的运动及电磁感应之中加以考查.

试题详情

18.  如图18所示,磁感应强度B=0.2T的匀强磁场中有一折成30°角的足够长的金属导轨,导轨平面垂直于磁场方向。一条长度的直导线MN垂直ob方向放置在轨道上并接触良好。当MN以v=4m/s从导轨O点开始向右平动时,若所有导线单位长度的电阻。求:经过时间后:

(1)闭合回路的感应电动势的瞬时值?

(2)闭合回路中的电流大小和方向?

(3)MN两端的电压

试题详情

17.如图17所示,平行的光滑金属导轨EF和GH相距L,处于同一竖直平面内,GE间解有阻值为R的电阻,轻质金属杆ab长为2L,近贴导轨数值放置,离b端0.5L处固定有质量为m的小球,整个装置处于磁感应强度为B并与导轨平面垂直的匀强磁场中,当ab杆由静止开始紧贴导轨绕b端向右倒下至水平位置时,球的速度为v,若导轨足够长,导轨及金属杆电阻不计,求在此过程中:

(1)通过电阻R的电量;

(2)R中通过的最大电流强度.

试题详情

16. 在磁感应强度为B=0.4 T的匀强磁场中放一个半径r0=50 cm的圆形导轨,上面搁有互相垂直的两根导体棒,一起以角速度ω=103 rad/s逆时针匀速转动。圆导轨边缘和两棒中央通过电刷与外电路连接,若每根导体棒的有效电阻为R0=0.8 Ω,外接电阻R=3.9 Ω,如图16所示,求:

(1)每半根导体棒产生的感应电动;

(2)当电键S接通和断开时两电表示数(电压表和电流表为理想电表).

试题详情

15. 如图15所示,光滑的平行导轨PQ相距l=1m,处在同一水平面中,导轨左端接有如图所示的电路,其中水平放置的平行板电容器C两极板间距离d =10mm,定值电阻R1=R3=8Ω,R2=2Ω,导轨电阻不计,磁感应强度B=0.4T的匀强磁场竖直向下穿过导轨平面,当金属棒ab沿导轨向右匀速运动(开关S断开,金属棒电阻也不计)时,电容器两极板之间质量m=1×1014kg,带电荷量q = -1×1015C的粒子恰好静止不动;当S闭合时,粒子以加速度a=7m/s2向下做匀加速运动,取g=10m/s2,求:

(1)金属棒ab运动的速度多大?电阻多大?

(2)S闭合后,使金属棒ab做匀速运动的外力的功率多大?

试题详情

14.如图14所示,电源电动势E=4.5V,内阻r=1,滑动变阻器总阻值=12,小灯泡电阻=12不变,=2.5。当滑片P位于中点,S闭合时,灯泡恰能正常发光,求:

(1)流过小灯泡的电流;

(2)S断开时,小灯泡能否正常发光?如果它正常发光,滑片P应如何移动?

试题详情


同步练习册答案