3.函数y = ex + e−x(e是自然对数的底数)的值域是 ▲ .
2.在△ABC 中,“B=60°”是“A,B,C 成等差数列”的 ▲ 条件(指充分性和必要性).
1.已知P = {−1,0,},Q = { y | y = sin θ,θ∈R},则P ∩ Q = ▲ .
20.(本小题满分16分)
已知函数
,
,其中m∈R.
(1)若0<m≤2,试判断函数f (x)=f1 (x)+f2 (x)
的单调性,并证明你的结论;
(2)设函数
若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g (x1)
= g (x2) 成立,试确定实数m的取值范围.
19.(本小题满分16分)
某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为
元(8≤x≤9)时,一年的销售量为(10-x)2万件.
(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x)(销售一件商品获得的利润l=x-(a+4));
(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最
大值M(a).
18.(本小题满分15分)
如图,已知圆O:x2+y2=2交x轴于A,B两点,点P(-1,1)为圆O上一点.曲线C是以AB为长轴,离心率为
的椭圆,点F为其右焦点.过原点O作直线PF的垂线交椭圆C的右准线l于点Q.
(1)求椭圆C的标准方程;
(2)证明:直线PQ与圆O相切.
17.(本小题满分15分)
已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足
,其前n项和为Sn.
(1)求数列{an}的通项公式an;
(2)若S2为S1,Sm(m∈N*)的等比中项,求m的值.
16.(本小题满分14分)
如图,四边形ABCD为矩形,平面ABCD⊥平面ABE,BE=BC,F为CE上的一点,且BF⊥平面ACE.
(1)求证:AE⊥BE;
(2)求证:AE∥平面BFD.
15.(本小题满分14分)
在△ABC中,已知
,
,求
的值.
14.若函数
有三个不同的零点,则实数k的取值范围为 ▲ .
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com