6.(2009北京文)设集合
,则
( )
A.
B.
C.
D.![]()
答案 A
解析 本题主要考查集合的基本运算以及简单的不等式的解法. 属于基础知识、基本运
算的考查∵![]()
,
∴
,故选A.
5.(2009浙江文)设![]()
,
,
,则
( ) A.
B.
C.
D.
答案 B
[命题意图]本小题主要考查了集合中的补集、交集的知识,在集合的运算考查对于集合理解和掌握的程度,当然也很好地考查了不等式的基本性质.
解析 对于
,因此![]()
.
4.(2009浙江理)设![]()
,
,
,则
( )
A.
B.
C.
D.
答案 B
解析 对于
,因此![]()
.
3.(2009浙江理)设![]()
,
,
,则
( )
A.
B.
C.
D.
答案 B
解析 对于
,因此![]()
![]()
2.(2009全国卷Ⅰ理)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A
B,则
集合
中的元素共有 ( )
A.
3个 B. 4个 C. 5个
D. 6个
解:
,
故选A。也可用摩根律:![]()
答案 A
1.(2009年广东卷文)已知全集
,则正确表示集合
和
关系的韦恩(Venn)图是 ( )
![]()
答案 B
解析 由
,得
,则
,选B.
2009年高考题
14、方程
至少有一个实数根的充要条件是
15,设数列{an}中a1=2,an+1=an+n+1,则通项an= .
三,解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤
16(本小题满分12分)已知△ABC的三个内角A、B、C的对边分别是a、b、c,
若向量
与
的夹角为
.
(1)求角C;(2)若
,△ABC的面积为
,求
的值.
17(本小题满分12分)设定义域为
的奇函数
是减函数,若当
时,
恒成立,求实数
的取值范围.
18(本小题满分12分)设函数
的最大值为
,最小正周
期为
.
(Ⅰ)求
的值及单调递增区间;
(Ⅱ)10个互不相等的正数
满足
,且
,
求
的值.
19(本小题满分12分) 已知函数
(1)当
时,解不等式:![]()
(2)讨论函数
的奇偶性,并说明理由
20(本小题满分13分) 已知函数![]()
(Ⅰ)求
在区间
上的最大值![]()
(Ⅱ)是否存在实数
,使得
的图象与
的图象有且只有三个交点?若存在,若存在,求出
的取值范围,若不存在,说明理由.
21(本小题满分14分)
在数列{
}中,已知
,
(
是常数,
),
,
,
成公比不等于1的等比数列.(1)求证:数列
是等差数列;(2)求数列{
}的通项公式;
(3)设
,数列{
}的前
项和为
,求证:
<
.
10.边长为5、7、8的三角形的最大角与最小角之和为 ( )
A. 90° B. 120° C. 135° D.150°
第Ⅱ卷(非选择题 共100分)
二,填空题:本大题共5小题,每小题5分,共25分,把答案填在题中横线上.
11,若曲线
存在垂直于
轴的切线,则实数
的取值范围是
12,设
是定义域为
的奇函数,且在
上是减函数,若
则不等式
的解集是
13,在
中,已知
是
边上的一点,若
,
则实数
5.已知下列命题中:![]()
(1)若
,且
,则
或
,![]()
(2)若
,则
或![]()
![]()
(3)若不平行的两个非零向量
,满足
,则![]()
![]()
(4)若
与
平行,则
,其中真命题的个数是 ( )![]()
A.
B.
C.
D.![]()
![]()
6,在
中,
的面积
,则
与
夹角的取值范围是 ( )![]()
A,
B,
C,
D, ![]()
![]()
7,已知函数
满足:当
时,
,当
时,
,则![]()
( )![]()
A,
B,
C,
D, ![]()
![]()
8,设函数
,其中
,
为
的导函数,则
的取值范围是
( )
A,
B,
C,
D, ![]()
9,已知直线y=x+a与曲线
相切,则实数
的值是 ( )
A, 1
B, 2
C,
D,
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com