0  420395  420403  420409  420413  420419  420421  420425  420431  420433  420439  420445  420449  420451  420455  420461  420463  420469  420473  420475  420479  420481  420485  420487  420489  420490  420491  420493  420494  420495  420497  420499  420503  420505  420509  420511  420515  420521  420523  420529  420533  420535  420539  420545  420551  420553  420559  420563  420565  420571  420575  420581  420589  447090 

例1 如图已知是两条异面直线,所成的角为,点分别在直线上,线段是公垂线段,且,求线段的长

解:

 

 

所以,

说明:(1)由上例:的长是异面直线上任意两点的距离,的长是异面直线的距离;

   (2)当时,的长的运算中取"-".

例2.已知所在平面外的一点,分别是的中点,

(1)求证:的公垂线;

(2)当角时,求间的距离

解:(1)连结

 ∴,∵的中点,∴

的中点,∴,同理:

的公垂线

(2)取的中点,连结,∵分别是的中点,

是异面直线所成的角,即

且可得:

,即间的距离为

例3.如图直二面角中,两点分别在平面内,与平面所成的角分别是,求两点在棱上的射影间的距离

解:作,连结

∵二面角是直二面角,∴平面平面

分别是在平面内的射影,

分别是与平面所成的角,

,∵,∴

,即两点在棱上的射影间的距离为

试题详情

5.两条异面直线的距离:两条异面直线的公垂线段的长度

说明:两条异面直线的距离即为直线到平面的距离即两条异面直线的距离等于其中一条直线到过另一条直线且与这条直线平行的平面的距离

试题详情

4.公垂线段最短:两条异面直线的公垂线段是分别连结两条异面直线上两点的线段中最短的一条;

试题详情

3.两条异面直线的公垂线段:两条异面直线的公垂线夹在异面直线间的部分,叫做两条异面直线的公垂线段;

试题详情

1  异面直线的公垂线:和两条异面直线都垂直相交的直线叫做异面直线的公垂线.

2.公垂线唯一:任意两条异面直线有且只有一条公垂线

证明:设是两条异面直线.在上任取一点,过

确定平面,则.在上任取一点,过

垂足为,设确定的平面与平面相交于直线

相交于点,在内作,交于点

,又∵,∴

的公垂线段,

如果还有直线也是的公垂线,

于是

,即共面,这与是两条异面直线矛盾,

所以,两条异面直线的公垂线只有一条

试题详情

4.两个平行平面的距离:两个平行平面的公垂线段的长度叫做两个平行平面的距离

试题详情

3.两个平行平面的公垂线、公垂线段:

(1)两个平面的公垂线:和两个平行平面同时垂直的直线,叫做两个平面的公垂线

(2)两个平面的公垂线段:公垂线夹在平行平面间的的部分,叫做两个平面的公垂线段

(3)两个平行平面的公垂线段都相等

(4)公垂线段小于或等于任一条夹在这两个平行平面间的线段长

试题详情

2.直线到与它平行平面的距离:一条直线上的任一点到与它平行的平面的距离,叫做这条直线到平面的距离(转化为点面距离)

试题详情

1.点到平面的距离:

已知点是平面外的任意一点,过点,垂足为,则唯一,则是点到平面的距离

即:一点到它在一个平面内的正射影的距离叫做这一点到这个平面的距离(转化为点到点的距离)

结论:连结平面外一点内一点所得的线段中,垂线段最短

试题详情

2.) 忠诚;挚爱,热爱[U][(+to/for)]

devotion to music 热爱音乐

试题详情


同步练习册答案