题目列表(包括答案和解析)

 0  47716  47724  47730  47734  47740  47742  47746  47752  47754  47760  47766  47770  47772  47776  47782  47784  47790  47794  47796  47800  47802  47806  47808  47810  47811  47812  47814  47815  47816  47818  47820  47824  47826  47830  47832  47836  47842  47844  47850  47854  47856  47860  47866  47872  47874  47880  47884  47886  47892  47896  47902  47910  447348 

21、(08凉山)我州有一种可食用的野生菌,上市时,外商李经理按市场价格20元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.

(1)设天后每千克该野生菌的市场价格为元,试写出之间的函数关系式.

(2)若存放天后,将这批野生菌一次性出售,设这批野生菌的销售总额为元,试写出之间的函数关系式.

(3)李经理将这批野生菌存放多少天后出售可获得最大利润元?

(利润=销售总额-收购成本-各种费用)

试题详情

20、(河北02)某商店经销一种销售成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请售答以下问题:

(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;

(2)设销售单价为每千克x元,月销售利润为y元,求yx函数关系式(不必写出x的取值范围);

(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?

试题详情

19、(天门07)某瓜果基地市场部为指导该基地某种蔬菜的生产销售,在对历年市场行情和生产情况进行调查的基础上,对今年这种蔬菜上市后的市场售价和生产成本进行了预测,提供了两个方面的信息,如图所示。注:两图中的每个实心点所对应的纵坐标分别指相应月份的售价和成本,生产成本6月份最低,图甲的图像是线段,图乙的图像是抛物线。

请你根据图像提供的信息说明:

(1)3月份出售这种蔬菜,每千克的收益是多少元?(收益=售价-成本)

(2)哪个月出售这种蔬菜,每千克的收益最大?说明理由;

(3)已知市场部销售该种蔬菜,45两个月的总收益为48万元,且5月份的销量比4月份的销量多2万公斤,求45两个月销量各多少万公斤?

 

试题详情

18、(南宁08)随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高. 某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润与投资量x成正比例关系,如图12-①所示;种植花卉的利润与投资量x成二次函数关系,如图12-②所示(注:利润与投资量的单位:万元).

(1)分别求出利润关于投资量x的函数关系式;

(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获得的最大利润是多少?

试题详情

17、(十堰06)“健益”超市购进一批元/千克的绿色食品,如果以元/千克销售,那么每天可售出千克.由销售经验知,每天销售量(千克)与销售单价(元)()存在如下图所示的一次函数关系.

(1)试求出的函数关系式;

(2)设“健益”超市销售该绿色食品每天获得利润元,当销售单价为何值时,每天可获得最大利润?最大利润是多少?

(3)根据市场调查,该绿色食品每天可获利润不超过元,现该超市经理要求每天利润不得低于元,请你帮助该超市确定绿色食品销售单价的范围(直接写出).

 

试题详情

16、(07龙岩)如图,抛物线经过的三个顶点,已知轴,点轴上,点轴上,且

(1)求抛物线的对称轴;

(2)写出三点的坐标并求抛物线的解析式;

(3)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形.若存在,求出所有符合条件的点坐标;不存在,请说明理由.

 

试题详情

15、(08云南)如图,已知二次函数图象的顶点坐标为C(1,0),直线与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴上.

  (1)求的值及这个二次函数的关系式;

(2)P为线段AB上的一个动点(点P与A、B不重合),过P作轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求之间的函数关系式,并写出自变量的取值范围;

(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.

 

试题详情

14、(海南08)如图,已知抛物线经过原点Ox轴上另一点A,它的对称轴x=2 与x轴交于点C,直线y=-2x-1经过抛物线上一点B(-2,m),且与y轴、直线x=2分别交于点DE.(1)求m的值及该抛物线对应的函数关系式;

(2)求证:① CB=CE ;② DBE的中点;

(3)若P(xy)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE,若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.

 

试题详情

13、(海南05)如图,抛物线轴交于A(-1,0),B(3,0) 两点.

(1)求该抛物线的解析式;

(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标;

(3)设(1)中抛物线交y 轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.

 

试题详情

12、(08宁波)如图,□ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线yax2+bx+c经过x轴上的点AB

(1)求点ABC的坐标.

(2)若抛物线向上平移后恰好经过点D,求平移后抛物线的解析式.

 

试题详情


同步练习册答案