(一)问题提出
1.点P(x0,y0)和圆锥曲线C:f(x,y)=0有哪几种位置关系?它们的条件是什么?
引导学生回答,点P与圆锥曲线C的位置关系有:点P在曲线C上、点P在曲线C内部(含焦点区域)、点P在曲线的外部(不含焦点的区域).那么这三种位置关系的条件是什么呢?这是我们要分析的问题之一.
2.直线l:Ax+By+C=0和圆锥曲线C:f(x,y)=0有哪几种位置关系?
引导学生类比直线与圆的位置关系回答.直线l与圆锥曲线C的位置关系可分为:相交、相切、相离.那么这三种位置关系的条件是什么呢?这是我们要分析的问题之二.
3.疑点:直线与圆锥曲线位置关系的判定方法中△=0不是相切的充要条件.
(解决办法:用图形向学生讲清楚这一点.)
2.难点:圆锥曲线上存在关于直线对称的两点,求参数的取值范围.
(解决办法:利用判别式法和内点法进行讲解.)
1.重点:直线与圆锥曲线的相交的有关问题.
(解决办法:先引导学生归纳出直线与圆锥曲线的位置关系,再加以应用.)
(三)学科渗透点
通过点与圆锥曲线的位置及其判定,渗透归纳、推理、判断等方面的能力.
(二)能力训练点
通过对点、直线与圆锥曲线的位置关系的研究,培养学生综合运用直线、圆锥曲线的各方面知识的能力.
(一)知识教学点
使学生掌握点、直线与圆锥曲线的位置及其判定,重点掌握直线与圆锥曲线相交的有关问题.
9.熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?
理解公式之间的联系:
![]()
![]()
![]()
![]()
![]()
应用以上公式对三角函数式化简。(化简要求:项数最少、函数种类最少,分母中不含三角函数,能求值,尽可能求值。)
具体方法:
![]()
(2)名的变换:化弦或化切
(3)次数的变换:升、降幂公式
(4)形的变换:统一函数形式,注意运用代数运算。
![]()
![]()
![]()
![]()
10 正、余弦定理的各种表达形式你还记得吗?如何实现边、角转化,而解斜三角形?
![]()
(应用:已知两边一夹角求第三边;已知三边求角。)
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
11用反三角函数表示角时要注意角的范围。
![]()
![]()
![]()
8.熟练掌握同角三角函数关系和诱导公式了吗?
![]()
![]()
![]()
“奇”、“偶”指k取奇、偶数。
![]()
![]()
A. 正值或负值 B. 负值 C. 非负值 D. 正值
![]()
7. 熟练掌握三角函数图象变换了吗?
(平移变换、伸缩变换)
平移公式:
![]()
![]()
![]()
图象?
![]()
![]()
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com