22、高为12.6米的教学楼ED前有一棵大树AB(如图1).
(1)某一时刻测得大树AB、教学楼ED在阳光下的投影长分别是BC=2.4米,DF=7.2米,求大树AB的高度.
(2)用皮尺、高为h米的测角仪,请你设计另一种测量大树AB高度的方案,要求:
①在图2上,画出你设计的测量方案示意图,并将应测数据标记在图上(长度用字母m 、n …表示,角度用希腊字母α、β …表示);
②根据你所画的示意图和标注的数据,计算大树AB高度(用字母表示).
![]()
21、为响应承办“绿色奥运”的号召,某中学初三、2班计划组织部分同学义务植树180棵,由于同学们参与的积极性很高,实际参加植树活动的人数比原计划增加了50%,结果每人比原计划少栽了2棵树,问实际有多少人参加了这次植树活动?
20、李红和张明正在玩掷骰子游戏,两人各掷一枚骰子。
⑴当两枚骰子点数之积为奇数时,李红得3分,否则,张明得1分,这个游戏公平吗?为什么?
⑵当两枚骰子的点数之和大于7时,李红得1分,否则张明得1分,这个游戏公平吗?为什么?如果不公平,请你提出一个对双方公平的意见。
19、某校研究性学习小组在研究相似图形时,发现相似三角形的定义、判定及其性质,可以拓展到扇形的相似中去。例如,可以定义:“圆心角相等且半径和弧长对应成比例的两个扇形叫做相似扇形”;相似扇形有性质:弧长比等于半径比、面积比等于半径比的平方…。请你协助他们探索这个问题。
(1) 写出判定扇形相似的一种方法:若_____________________________,则两个扇形相似;
(2) 有两个圆心角相等的扇形,其中一个半径为a、弧长为m,另一个半径为2a,则它的弧长为_________________;
(3) 如图1是一完全打开的纸扇,外侧两竹条AB和AC的夹角为120°,AB为30cm,现要做一个和它形状相同、面积是它一半的纸扇(如图2),求新做纸扇(扇形)的圆心角和半径。
![]()
18、
大楼AD的高为10米,远处有一塔BC,某人在楼底A处测得踏顶B处的仰角为60º,爬到楼顶D点测得塔顶B点的仰角为30º,求塔BC的高度。
17、已知不等式:⑴1-x<0;⑵
<1;⑶ 2x+3>1;⑷ 0.2x-3<-2.你喜欢其中哪两个不等式,请把它们选出来组成一个不等式组,求出它的解集,并在数轴上把解集表示出来.
16、先化简,再求值:(
)÷
,其中x=
y=![]()
15、如图,已知,在△ABC和△DCB中,AC=DB,
若不增加任何字母与辅助线,要使△ABC≌△DCB,
则还需增加一个条件是 .
14、
甲、乙两个同学在几次测验中,平均分都是86分,甲的方差是0.61,乙的方差是0.72,则可知成绩较稳定情况是
.
(填甲或乙或一样)稳定。
13、一家皮鞋店,购进同一品牌的8双皮鞋尺码(单位:㎝)依次为:22,22.5,23.5,23.5,23.5,24,24.5,则这组数据的众数是 ㎝.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com