题目列表(包括答案和解析)

 0  44728  44736  44742  44746  44752  44754  44758  44764  44766  44772  44778  44782  44784  44788  44794  44796  44802  44806  44808  44812  44814  44818  44820  44822  44823  44824  44826  44827  44828  44830  44832  44836  44838  44842  44844  44848  44854  44856  44862  44866  44868  44872  44878  44884  44886  44892  44896  44898  44904  44908  44914  44922  447348 

3、把一堆苹果分给小朋友,如果每人分4个,那么多6个;如果前面每人分6个,那么最后一人得到的苹果少于3个,问有几个小朋友?有多少个苹果?

试题详情

2、小明家客厅的灯坏了,他去商店买灯.商店柜台里现有功率为60瓦的白炽灯和40瓦的节能灯,它们的单价分别为2元和32元.经过了解得知这两种灯的照明效果和使用寿命都一样。已知当地的电价为每度0.75元,请问当这两种灯的使用寿命超过多少时间时,小明选择节能灯才合算?[用电量(度)=功率(千瓦)×时间(时)]

试题详情

1、初三(2)班照毕业合影留念,冲晒底片等费用需要22.5元,另外每冲洗一张照片需要加收2.5元,如果给每人冲洗一张照片,且每人付款不超过3元,那么这个班至少有多少学生?

试题详情

4、辽宁素以“苹果之乡”著称,某乡组织20辆汽车装运A、B、C三种水果42吨到外地销售。按规定每辆车只装同一种苹果,且必须装满。每种苹果不少于2车。

苹果品种
A
B
C
每辆汽车运载量(吨)
2.2
2.1
2
每吨苹果获利(百元)
6
8
5

⑴设x辆车装运A种苹果,用y辆车装运B种苹果,根据上表提供的信息,求x与y间的函数关系式,并求x的取值范围;

⑵设此次外销活动的利润为 w (百元),求w与x的函数关系式以及最大利润并安排相应的车辆分配方案。

l    不等式问题:

注意审清题意,不要列成方程来解题。留意“至少”、“多于”、“少于”、“不超过”、“不低于”等字眼,通常包含这些字词的题目都要列不等式(组)解题,并且要理解这些字词所代表的数学意义。

练习:

试题详情

3、某工厂生产某种产品,每件产品的出厂价为100元,其成本价为50元,因为在生产过程中。平均每生产一件产品有0.5m3的污水排出,所以为了净化环境,工厂设计了两种方案对污水进行处理,并准备实施。(12分)

方案1:工厂污水先净化处理再排出。每处理1m3污水所用原料费为4元,并且每月排污设备损耗费为60000元。

方案2:工厂将污水排到污水厂统一处理,每处理1m3污水需付28元排污费。

(1)设工厂每月生产x件产品,每月利润为y元,分别求出依方案1和方案2处理污水时,y与x的函数关系式

(2)设工厂每月生产量为6000件时,你若作为厂长在不污染环境,又节约资金的前提下应选用哪种处理污水的方案?请你通过计算加以说明。

试题详情

2、用铝合金材料做一个形状如图所示的矩形窗框,设窗框的一边为xm,窗户的透光面积为ym2。回答下列问题:

(1)    求y与x的函数关系式

(2)    当x为何值时,窗户透光面积最大?并求出这时另一边长是多少。

试题详情

1、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克,销售单价每涨1元,月销售量就会减少10千克,针对这种水产品的销售情况,请解答以下问题:

(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;

(2)设销售单价为每千克x元,月销售利润为y元,求y与X的函数关系式(不必写出x的取值范围);

(3)商店想在月销售成本不超过 10000元的情况下,使得月销售利润达到 8000元,销售单价应定为多少?

试题详情

3、甲做180个机器零件比乙做240个所用的时间少小时,已知两人每小时共做70个零件,求甲、乙每小时各做多少个零件?

l    函数型问题:

练习:

试题详情

2、某公路上的一段道路维修工程准备对外招标,现有甲乙两个工程队竟标,竟标资料上显示:若由两队合作,6天可以完成,共需工程费用10200元;若单独完成此项工程,甲队比乙队少用5天,但甲队每天的工程费用比乙队多300元,工程指挥部决定从这两个队中选一个队单独完成此项工程,若从节省资金的角度考虑,应该选择哪个工程队?为什么?

试题详情

1、甲、乙两名职工接受相同数量的生产任务,开始时,乙比甲每天少做4件,乙比甲多用2天时间,这样甲、乙两人各剩624件,随后,乙改进了生产技术,每天比原来多件6件,而甲每天的工作量不变,结果两人完成全部生产任务所用的时间相同。求原来甲、乙两人每天各做多少件?每人的全部生产任务是多少?

试题详情


同步练习册答案