题目列表(包括答案和解析)
24.
(10分)解:(1)设抛物线的表达式为
1分
点
在抛物线的图象上.
∴![]()
······························································ 3分
∴抛物线的表达式为
············································································· 4分
(2)设窗户上边所在直线交抛物线于C、D两点,D点坐标为(k,t)
已知窗户高1.6m,∴
··························································· 5分
![]()
(舍去)············································································ 6分
∴
(m)·············································································· 7分
又设最多可安装n扇窗户
∴
····················································································· 9分
.
答:最多可安装4扇窗户.···················································································· 10分
(本题不要求学生画出4个表示窗户的小矩形)
91.(10分)某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物线拱高为5.6m.
(1)在如图所示的平面直角坐标系中,求抛物线的表达式.
(2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m.请计算最多可安装几扇这样的窗户?
![]()
106.(08四川乐山28题)28.如图(18),在平面直角坐标系中,
的边
在
轴上,且
,以
为直径的圆过点
.若点
的坐标为
,
,A、B两点的横坐标
,
是关于
的方程
的两根.
(1)求
、
的值;
(2)若
平分线所在的直线
交
轴于点
,试求直线
对应的一次函数解析式;
(3)过点
任作一直线
分别交射线
、
(点
除外)于点
、
.则
的是否为定值?若是,求出该定值;若不是,请说明理由.
(08四川乐山28题解析)28.解:(1)
以
为直径的圆过点
,
,而点
的坐标为
,
由
易知
,
,····································································································· 1分
即:
,解之得:
或
.
,
,
即
.···································································································· 2分
由根与系数关系有:
,
解之
,
.································································································ 4分
(2)如图(3),过点
作
,交
于点
,
易知
,且
,
在
中,易得
,··········· 5分
,
,
又
,有
,
,······································································································· 6分
,
则
,即
,························································································ 7分
易求得直线
对应的一次函数解析式为:
.··················································· 8分
解法二:过
作
于
,
于
,
由
,
求得
.········································································································ 5分
又
,
求得
.····························································································· 7分
即
,
易求得直线
对应的一次函数解析式为:
.··················································· 8分
(3)过点
作
于
,
于
.
为
的平分线,
.
由
,有
········································································· 9分
由
,有
······································································ 10分
,··············································································· 11分
即
.···················································································· 12分
105.(08湖南邵阳25题)25.如图(十七),将含
角的直角三角板
(
)绕其直角顶点
逆时针旋转
解(
),得到
,
与
相交于点
,过点
作
交
于点
,连结
.设
,
的面积为
,
的面积为
.
(1)求证:
是直角三角形;
(2)试求用
表示
的函数关系式,并写出
的取值范围;
(3)以点
为圆心,
为半径作
,
①当直线
与
相切时,试探求
与
之间的关系;
②当![]()
时,试判断直线
与
的位置关系,并说明理由.
(08湖南邵阳25题解析)25. (1)
,
又
,································································· 1分
又
,···························································· 2分
,
,即
是直角三角形;······························································ 3分
(2)在
中,
,
,
,
,
;··············································································· 4分
;··························· 5分
(3)①直线
与
相切时,则
.
,
.
,································································· 6分
又
,
是等边三角形,
,
,
又
;······································································ 7分
②当
时,
则有
,解之得
或
;··················································· 8分
(i)当
时,
,
在
中,
,
,
在
中,
,········································· 9分
,即
,
直线
与
相离;···························································································· 10分
(ii)当
时,
同理可求出:
,·············································· 11分
,
直线
与
相交.···························································································· 12分
104.(08贵州遵义27题)27。(14分)如图(1)所示,一张平行四边形纸片ABCD,AB=10,AD=6,BD=8,沿对角线BD把这张纸片剪成△AB1D1和△CB2D2两个三角形(如图(2)所示),将△AB1D1沿直线AB1方向移动(点B2始终在AB1上,AB1与CD2始终保持平行),当点A与B2重合时停止平移,在平移过程中,AD1与B2D2交于点E,B2C与B1D1交于点F,
(1)当△AB1D1平移到图(3)的位置时,试判断四边形B2FD1E是什么四边形?并证明你的结论;
(2)设平移距离B2B1为x,四边形B2FD1E的面积为y,求y与x的函数关系式;并求出四边形B2FD1E的面积的最大值;
(3)连结B1C(请在图(3)中画出)。当平移距离B2B1的值是多少时,△ B1B2F与△ B1CF相似?![]()
![]()
(08贵州遵义27题解析)解:(1) 四边形B2FD1E是矩形。
因为△AB1D1平移到图(3)的,所以四边形B2FD1E是一个平行四边形,又因为在平行四边形ABCD中,AB=10,AD=6,BD=8,则有∠ADB是直角。所以四边形B2FD1E是矩形。
(2)因为三角形B1B2F与三角形AB1D1相似,则有B2F=
=0.6X,B1F=
=0.8x
所以sB2FD1E=B2F×D1F=0.6X × (8-0.8x)=4.8x-0.48x2
即y=4.8x-0.48x2=12-0.48(x-5)
当x=5时,y=12是最大的值。
(3)要使△ B1B2F与△ B1CF相似,则有
即![]()
解之得:x=3.6
103.
(08云南省卷24题) 24.(本大题满分14分)如图12,已知二次函数图象的顶点坐标为C(1,0),直线
与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴
上.
(1)求
的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作
轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为
,点P的横坐标为
,求
与
之间的函数关系式,并写出自变量
的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四形?若存在,请求出此时P点的坐标;若不存在,请说明理由.
(08云南省卷24题解析) (1) ∵ 点A(3,4)在直线y=x+m上,
∴ 4=3+m. ………………………………(1分)
∴ m=1. ………………………………(2分)
设所求二次函数的关系式为y=a(x-1)2. ………………………………(3分)
∵ 点A(3,4)在二次函数y=a(x-1)2的图象上,
∴ 4=a(3-1)2,
∴ a=1. ………………………………(4分)
∴ 所求二次函数的关系式为y=(x-1)2.
即y=x2-2x+1. ………………………………(5分)
(2) 设P、E两点的纵坐标分别为yP和yE .
∴ PE=h=yP-yE ………………………………(6分)
=(x+1)-(x2-2x+1) ………………………………(7分)
=-x2+3x. ………………………………(8分)
即h=-x2+3x (0<x<3). ………………………………(9分)
(3) 存在. ………………………………(10分)
解法1:要使四边形DCEP是平行四边形,必需有PE=DC. …………………(11分)
∵ 点D在直线y=x+1上,
∴ 点D的坐标为(1,2),
∴ -x2+3x=2 .
即x2-3x+2=0 . ………………………………(12分)
解之,得 x1=2,x2=1 (不合题意,舍去) ………………………………(13分)
∴ 当P点的坐标为(2,3)时,四边形DCEP是平行四边形. ……………(14分)
解法2:要使四边形DCEP是平行四边形,必需有BP∥CE. ………………(11分)
设直线CE的函数关系式为y=x+b.
∵ 直线CE 经过点C(1,0),
∴ 0=1+b,
∴ b=-1 .
∴ 直线CE的函数关系式为y=x-1 .
∴
得x2-3x+2=0.
………………………………(12分)
解之,得 x1=2,x2=1 (不合题意,舍去) ………………………………(13分)
∴ 当P点的坐标为(2,3)时,四边形DCEP是平行四边形. ……………(14分)
102.23.如图9,在平面直角坐标系中,以点
为圆心,2为半径作圆,交
轴于
两点,开口向下的抛物线经过点
,且其顶点
在
上.
(1)求
的大小;
(2)写出
两点的坐标;
(3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点
,使线段
与
互相平分?若存在,求出点
的坐标;若不存在,请说明理由.
(08新疆乌鲁木齐23题解答)23.解:(1)作
轴,
为垂足,
,半径
······················································ 1分
,
······································ 3分
(2)
,半径![]()
,故
,············································ 5分
········································································· 6分
(3)由圆与抛物线的对称性可知抛物线的顶点
的坐标为
··································· 7分
设抛物线解析式
·················································································· 8分
把点
代入上式,解得
······································································· 9分
····································································································· 10分
(4)假设存在点
使线段
与
互相平分,则四边形
是平行四边形········· 11分
且
.
轴,
点
在
轴上.·············································································· 12分
又
,
,即
.
又
满足
,
点
在抛物线上······································································································ 13分
所以存在
使线段
与
互相平分.···························································· 14分
21.
解:(1)过
作
轴于点
,如图(第21题图)
在
中,
,![]()
································· 1分
由对称性可知:![]()
![]()
············································································ 2分
![]()
点
的坐标为
····························································································· 3分
(2)设经过
的抛物线的解析式为
,则
································································································· 4分
解之得
![]()
抛物线的解析式为:
································································· 5分
(3)
与两坐标轴相切
圆心
应在第一、三象限或第二、四象限的角平分线上.
即在直线
或
上·························································································· 6分
若点
在直线
上,根据题意有
![]()
解之得
,![]()
![]()
![]()
····································································································· 7分
若点
在直线
上,根据题意有
![]()
解之得
,![]()
![]()
![]()
的半径
为
或
.······································································ 8分
101.
21.如图,已知平面直角坐标系中,有一矩形纸片
,
为坐标原点,
轴,
,现将纸片按如图折叠,
为折痕,
.折叠后,点
落在点
,点
落在线段
上的
处,并且
与
在同一直线上.
(1)求
的坐标;
(2)求经过三点
的抛物线的解析式;
(3)若
的半径为
,圆心
在(2)的抛物线上运动,
与两坐标轴都相切时,求
半径
的值.
21、 (2008台湾) 如图,圆O1、圆O2、圆O3三圆两两相切,
为圆O1、圆O2的公切线,
为半圆,且分别与三圆各切于一点。若圆O1、圆O2的半径均为1,则圆O3的半径为何?( )
![]()
A. 1 B.
C.
-1 D.
+1
答案:C
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com