题目列表(包括答案和解析)
1.(2010江苏泰州,1,3分)
的倒数为( )
A.
B.
C.
D. ![]()
[分析]如果两个数的积为1,那么这两个数互为倒数.所以
的倒数为
.
[答案]D
[涉及知识点]有理数的有关概念
[点评]涉及与有理数有关的概念题型,关键是对概念的理解,“回到定义中去”直接运用概念解题.
[推荐指数]★★★★
28.
(本题满分12分)如图,已知一次函数y = -
x +7与正比例函数y = x的图象交于点A,
且与x轴交于点B.
(1)求点A和点B的坐标;
(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.
动点P从点O出发,以每秒1个单位长的速度,沿O-C-A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以A、P、R为顶点的三角形的面积为8?
②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不
存在,请说明理由.
[答案](1)根据题意,得,解得 ,∴A(3,4) .
令y=-x+7=0,得x=7.∴B(7,0).
(2)①当P在OC上运动时,0≤t<4.
由S△APR=S梯形COBA-S△ACP-S△POR-S△ARB=8,得
(3+7)×4-×3×(4-t)- t(7-t)-
t×4=8
整理,得t2-8t+12=0, 解之得t1=2,t2=6(舍)
当P在CA上运动,4≤t<7.
由S△APR= ×(7-t) ×4=8,得t=3(舍)
∴当t=2时,以A、P、R为顶点的三角形的面积为8.
②当P在OC上运动时,0≤t<4. 此时直线l交AB于Q。
∴AP=,AQ=t,PQ=7-t
当AP =AQ时, (4-t)2+32=2(4-t)2, 整理得,t2-8t+7=0. ∴t=1, t=7(舍)
当AP=PQ时,(4-t)2+32=(7-t)2,整理得,6t=24. ∴t=4(舍去)
当AQ=PQ时,2(4-t)2=(7-t)2整理得,t2-2t-17=0 ∴t=1±3 (舍)
当P在CA上运动时,4≤t<7. 此时直线l交AO于Q。过A作AD⊥OB于D,则AD=BD=4.
设直线l交AC于E,则QE⊥AC,AE=RD=t-4,AP=7-t.
由cos∠OAC= = ,得AQ = (t-4).
当AP=AQ时,7-t = (t-4),解得t = .
当AQ=PQ时,AE=PE,即AE= AP
得t-4= (7-t),解得t =5.
当AP=PQ时,过P作PF⊥AQ于F
AF= AQ = ×(t-4).
在Rt△APF中,由cos∠PAF= = ,得AF= AP
即 ×(t-4)= ×(7-t),解得t= .
∴综上所述,t=1或 或5或 时,△APQ是等腰三角形.
[考点]一次函数,二元一次方程组,勾股定理,三角函数,一元二次方程,等腰三角形。
[分析](1)联立方程y = - x +7和y = x即可求出点A的坐标,今y=-x+7=0即可得点B的坐标。
(2)①只要把三角形的面积用t表示,求出即可。应注意分P在OC上运动和P在CA上运动两种情况了。
②只要把有关线段用t表示,找出AP=AQ,AP=PQ,AQ=PQ的条件时t的值即可。应注意分别讨论P在OC上运动(此时直线l与AB相交)和P在CA上运动(此时直线l与AO相交)时AP=AQ,AP=PQ,AQ=PQ的条件。
27.![]()
(本题满分12分)情境观察将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是
▲ ,∠CAC′= ▲
°.问题探究如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q. 试探究EP与FQ之间的数量关系,并证明你的结论.
拓展延伸如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB= k AE,AC= k AF,试探究HE与HF之间的数量关系,并说明理由.
[答案]解:情境观察
AD(或A′D),90
问题探究
结论:EP=FQ.
证明:∵△ABE是等腰三角形,∴AB=AE,∠BAE=90°.
∴∠BAG+∠EAP=90°.∵AG⊥BC,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.
∵EP⊥AG,∴∠AGB=∠EPA=90°,∴Rt△ABG≌Rt△EAP. ∴AG=EP.
同理AG=FQ. ∴EP=FQ.
拓展延伸
结论: HE=HF.
理由:过点E作EP⊥GA,FQ⊥GA,垂足分别为P、Q.
∵四边形ABME是矩形,∴∠BAE=90°,
∴∠BAG+∠EAP=90°.AG⊥BC,∴∠BAG+∠ABG=90°,
∴∠ABG=∠EAP.
∵∠AGB=∠EPA=90°,∴△ABG∽△EAP,∴ = .
同理△ACG∽△FAQ,∴ = .
∵AB= k AE,AC= k AF,∴ = = k,∴ = . ∴EP=FQ.
∵∠EHP=∠FHQ,∴Rt△EPH≌Rt△FQH. ∴HE=HF
[考点]拼图,旋转,矩形性质,直角三角形两锐角关系,等量代换,全等三角形的判定和性质,相似三角形的判定和性质。
[分析]情境观察:易见与BC相等的线段是AD,它们是矩形的对边。
∠C′AC=1800-∠C′AD-∠C′AB=1800-900=900。
问题探究:找一个可能与EP和FQ都相等的线段AG。考虑Rt△ABG≌Rt△EAP,这用ASA易证,得出EP=AG。同样考虑Rt△ACG≌Rt△FAQ,得出FQ=AG。从而得证。
拓展延伸:与问题探究相仿,只不过将全等改为相似,证出FQ=AG。再证
Rt△EPH≌Rt△FQH,从而得证。
26.(本题满分10分)利民商店经销甲、乙两种商品. 现有如下信息:
请根据以上信息,解答下列问题:
(1)甲、乙两种商品的进货单价各多少元?
(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品
零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元. 在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?
[答案](1)设甲商品的进货单价是x元,乙商品的进货单价是y元.
根据题意,得 解得
答:甲商品的进货单价是2元,乙商品的进货单价是3元.
(2)设商店每天销售甲、乙两种商品获取的利润为s元,则
s=(1-m)(500+100×)+(2-m)(300+100×)
即 s=-2000m2+2200m+1100 =-2000(m-0.55)2+1705.
∴当m=0.55时,s有最大值,最大值为1705.
答:当m定为0.55时,才能使商店每天销售甲、乙两种商品获取的利润最大,每
天的最大利润是1705元.
[考点]根据等量关系列方程组种函数关系式,二次函数的最大值。
[分析](1)根据信息1:甲、乙两种商品的进货单价之和是5元;易列第一个方程x+y=5 。
根据信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元
知道甲商品零售单价为x+1,乙商品零售单价为2y-1,根据信息3:按零售单价购买甲商品3件和乙商品2件,共付了19元.列第二个方程3(x+1)+2(2y-1)=19。联立求解即可。
(2)根据利润=销售收入-销售成本公式 甲种商品的销售收入为:(3-m)(500+100×),销售成本为:2(500+100×),利润为(1-m)(500+100×)。乙种商品的销售收入为:(5-m)(300+100×),销售成本为:3(300+100×),利润为(2-m)(300+100×)。从而列出函数式,化为s=-a(m-b)2+c的形式.求出m=b时,s有最大利润c。
25.
(本题满分10分)如图,在△ABC中,∠C= 90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.
(1)若AC=6,AB= 10,求⊙O的半径;
(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.
[答案]解:(1)连接OD. 设⊙O的半径为r.
∵BC切⊙O于点D,∴OD⊥BC. ![]()
∵∠C=90°,∴OD∥AC,∴△OBD∽△ABC.
∴ = ,即 = . 解得r = ,
∴⊙O的半径为.
(2)四边形OFDE是菱形.
∵四边形BDEF是平行四边形,∴∠DEF=∠B.
∵∠DEF=∠DOB,∴∠B=∠DOB.
∵∠ODB=90°,∴∠DOB+∠B=90°,∴∠DOB=60°.
∵DE∥AB,∴∠ODE=60°.∵OD=OE,∴△ODE是等边三角形.
∴OD=DE.∵OD=OF,∴DE=OF.∴四边形OFDE是平行四边形.
∵OE=OF,∴平行四边形OFDE是菱形.
[考点]直线与圆相切的性质,相似三角形的判定和性质,平行四边形的性质,同弧所对的圆同角与圆心角的关系,直角三角形两锐角的关系,菱形的判定。
[分析](1)要求⊙O的半径,就要把它放到三角形内,故作辅助线:连接OD。这样△OBD和△ABC易证相似,再用对应边的比就可求出半径。
(2)要证四边形OFDE是菱形,由于OE和OF都是半径,故只要证四边形OFDE是平行四边形即可。要证这一点,由于四边形BDEF是平行四边形,有DE∥BF(ED∥OF),故只要证DE=OF,这一点由同弧
所对的圆同角∠DEF等于圆心角∠DOB的一半,平行四边形对角相等∠DEF=∠B和直角三角形两锐角互余∠DOB+∠B=90°容易得到。
24.
(本题满分10分)如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°. 使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:≈1.732)
[答案]解:过点B作BF⊥CD于F,作BG⊥AD于G.
在Rt△BCF中,∠CBF=30°,∴CF=BC·sin30°= 30× =15.
在Rt△ABG中,∠BAG=60°,∴BG=AB·sin60°= 40× = 20.
∴CE=CF+FD+DE=15+20+2=17+20≈51.64≈51.6(cm)cm.
答:此时灯罩顶端C到桌面的高度CE约是51.6cm.
[考点]解直角三角形,特殊角直角三角形值,矩形性质。
[分析]要求CE就要考虑三角形,所以作辅助线:过点B作BF⊥CD于F,作BG⊥AD于G. 得到两个直角三角形和一个矩形。这样利用解直角三角形就易求出。
23.
(本题满分10分)已知二次函数y = - x2 - x + .
(1)在给定的直角坐标系中,画出这个函数的图象;
(2)根据图象,写出当y < 0时,x的取值范围;
(3)若将此图象沿x轴向右平移3个单位,请写出
平移后图象所对应的函数关系式.
[答案]解:(1)画图(如图);
(2)当y < 0时,x的取值范围是x<-3或x>1;
(3)平移后图象所对应的函数关系式为y=- (x-2)2+2
[考点]二次函数,平移。
[分析](1)∵y = - x2 - x + =- (x+1)2+2;y=0,x=-2,1。
∴这个函数的图象顶点在(-1,2),对称轴是x=-1,与x轴的两个交点是
(-2,0),(1,0)。据此可画出这个函数的图象。
(2)根据图象,y < 0时图象在x轴下方,此时对应的x的取值范围是x<-3或
x>1。
(3)若将此图象沿x轴向右平移3个单位,只要考虑图象顶点(-1,2)向右平移3个单位得到(3,2),从而由y=- (x+1)2+2变为y=- (x-2)2+2。
22.
(本题满分8分)为迎接建党90周年,某校组织了以“党在我心中”为主题的电子
小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作品,对
其份数及成绩进行整理,制成如下两幅不完整的统计图.
根据以上信息,解答下列问题:
(1)求本次抽取了多少份作品,并补全两幅统计图;
(2)已知该校收到参赛作品共900份,请估计该校学生比赛成绩达到90分以上(含90分)的作品有多少份?
[答案]解:(1)∵24÷20%=120(份),∴本次抽取了120份作品.
![]()
补全两幅统计图
(2)∵900×(30%+10%)=360(份);
∴估计该校学生比赛成绩达到90分以上(含90分)的作品有360份.
[考点]统计图表分析。
[分析]统计图表的分析。
21.(本题满分8分)小明有3支水笔,分别为红色、蓝色、黑色;有2块橡皮,分别为
白色、灰色.小明从中任意取出1支水笔和1块橡皮配套使用.试用树状图或表格列出所有
可能的结果,并求取出红色水笔和白色橡皮配套的概率.
[答案]解:解法一:画树状图:
P(红色水笔和白色橡皮配套)= .
解法二:用列表法:
|
白 |
灰 |
||||||
|
红 |
(红,白) |
(红,灰) |
||||||
|
蓝 |
(蓝,白) |
(蓝,灰) |
||||||
|
黑 |
(黑,白) |
(黑,灰) |
P(红色水笔和白色橡皮配套)= .
[考点]概率,树状图或列表法。
[分析]用树状图或列表法列举出所有情况,并找取出红色水笔和白色橡皮配套的情况数,求出概率.
20.(本题满分8分)解不等式组并把解集在数轴上表示出来.
[答案]解:解不等式<1,得x<1;
解不等式2(1-x)≤5,得x≥-;
∴原不等式组的解集是- ≤x<1.
解集在数轴上表示为
[考点]一元一次不等式组,数轴。
[分析]根据一元一次不等式组的求解方法直接求解 。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com