题目列表(包括答案和解析)

 0  55193  55201  55207  55211  55217  55219  55223  55229  55231  55237  55243  55247  55249  55253  55259  55261  55267  55271  55273  55277  55279  55283  55285  55287  55288  55289  55291  55292  55293  55295  55297  55301  55303  55307  55309  55313  55319  55321  55327  55331  55333  55337  55343  55349  55351  55357  55361  55363  55369  55373  55379  55387  447348 

248.  已知:A1、B1、C1和A2、B2、C2分别是两条异面直线l1和l2上的任意三点,M、N、R、T分别是A1A2、B1A2、B1B2、C1C2的中点.求证:M、N、R、T四点共面.

证明  如图,连结MN、NR,则MN∥l1,NR∥l2,且M、N、R不在同一直线上(否则,根据三线平行公理,知l1∥l2与条件矛盾).∴  MN、NR可确定平面β,连结B1C2,取其中点S.连RS、ST,则RS∥l2,又RN∥l2,∴  N、R、S三点共线.即有S∈β,又ST∥l1,MN∥l1,∴MN∥ST,又S∈β,∴  STβ.

∴  M、N、R、T四点共面. =2:1

是正三角形的BD边上的高和中线,∴点G是正三角形的中心.故,即

证明二:由(I)知,

时,平行六面体的六个面是全等的菱形.同的证法可得, 又,所以。 

试题详情

247.设相交于G.,,且,所以如图,已知正方体ABCD-A1B1C1D1的棱长为a,求异面直线A1C1与BD1的距离.

解析:本题的关键是画出A1C1与BD1的公垂线,连B1D1交A1C1于O,在平面BB1D1内作OM⊥BD1,则OM就是A1C1与BD1的公垂线,问题得到解决.

解  连B1D1交A1C1于O,作OM⊥BD1于M.

∴  A1C1⊥B1D1,BB1⊥A1C1,BB1∩B1D1=B1.

∴  A1C1⊥平面BB1D1.  ∴  A1C1⊥OM,又OM⊥BD1.

∴  OM是异面直线A1C1与BD1的公垂线.

在直角ΔBB1D1中作B1N⊥BD1于N.

∵  BB1·B1D1=B1N·BD1,a·a=B1a,

∴  B1N=a,OM=B1N=a.

故异面直线A1C1与BD1的距离为a.

评析:作异面直线的公垂线一般是比较困难的,只有熟练地掌握线、线垂直,线、面垂直的关系后才能根据题目所给条件灵活作出.本题在求OM的长度时,主要运用中位线和面积的等量关系.

试题详情

246.如图,已知平行六面体的底面ABCD是菱形,且,(1)证明:

(II)假定CD=2,,记面为α,面CBD为β,求二面角α -BD -β的平面角的余弦值;

(III)当的值为多少时,能使?请给出证明. 解析:(I)证明:连结、AC,AC和BD交于.,连结, ∵四边形ABCD是菱形,∴AC⊥BD,BC=CD, 可证

,但AC⊥BD,所以,从而;      

(II)解:由(I)知AC⊥BD,是二面角α-BD-β的平面角,在中,BC=2, ∵∠OCB=60°,,故C1O=,即C1O=C1C,作,垂足为H,∴点H是.C的中点,且,所以;

(III)当时,能使

证明一:∵,所以,又,由此可得,∴三棱锥是正三棱锥.,         

试题详情

245.已知正四棱柱ABCD-A1B1C1D1中,点P是DD1的中点,且截面EAC与底面ABCD成450角,AA1=2a,AB=a,(1)设Q是BB1上一点,且BQa,求证:DQ面EAC;(2)判断BP与面EAC是否平行,并说明理由?(3)若点M在侧面BB1C1C及其边界上运动,并且总保持AMBP,试确定动点M所在的位置。

解析:(1)证:首先易证ACDQ,再证EODQ(O为AC与BD的交点)在矩形BDD1B1中,可证EDO与BDQ都是直角三角形,由此易证EODQ,故DQ面EAC得证;

(2)若BP与面EAC平行,则可得BP//EO,在三角形BPD中,O是BD中点,则E也应是PD中点,但PD=DD1=a,而ED=DO=BD=a,故E不是PD中点,因此BP与面EAC不平行;

(3)易知,BPAC,要使AMBP,则M一定在与BP垂直的平面上,取BB1中点N,易证BP面NAC,故M应在线段NC上。

试题详情

244.如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直。点M在AC上移动,点N在BF上移动,若CM=x ,BN=y, (1)求MN的长(用x,y表示);(2)求MN长的最小值,该最小值是否是异面直线AC,BF之间的距离。

解析:在面ABCD中作MPAB于P,连PN,则MP面ABEF,所以MPPN,PB=1-AP=PBN中,由余弦定理得:PN2=

,在中,MN=

(2)MN,故当时,MN有最小值。且该最小值是异面直线AC,BF之间的距离。

试题详情

243. 如图,边长均为a的正方形ABCD、ABEF所在的平面所成的角为。点M在AC上,点N在BF上,若AM=FN ,(1)求证:MN//面BCE ; (2)求证:MNAB; 

(3)求MN的最小值.

解析:(1)如图,作MG//AB交BC于G, NH//AB交BE于H, MP//BC交AB于P, 连PN, GH , 易证MG//NH,且MG=NH, 故MGNH为平行四边形,所以MN//GH , 故MN//面BCE ;

(2)易证AB面MNP, 故MNAB ;

(3)即为面ABCD与ABEF所成二面角的平面角,即,设AP=x , 则BP=a-x , NP=a-x , 所以:

 

故当时,MN有最小值

试题详情

242.如图,正方形ABCD、ABEF的边长都是1,而且平面ABCD、ABEF互相垂直。点M在AC上移动,点N在BF上移动,若CM=BN=(1)求MN的长;

(2)当为何值时,MN的长最小;  (3)当MN长最小时,求面MNA与面MNB所成的二面角的大小。

解析:(1)作MP∥AB交BC于点P,NQ∥AB交BE于点Q,连接PQ,依题意可得MP∥NQ,且MP=NQ,即MNQP是平行四边形。∴MN=PQ,由已知,CM=BN=a,CB=AB=BE=1,

,, 即,

(2)由(1)知:

(3)取MN的中点G,连接AG、BG,∵AM=AN,BM=BN,∴AG⊥MN,BG⊥MN,

∴∠AGB即为二面角α的平面角。又,所以由余弦定理有

。故所求二面角

试题详情

241. 已知点P是正方形ABCD所在的平面外一点,PD面AC,PD=AD=,设点C到面PAB的距离为d1,点B到平面PAC的距离为d2,则(    )

(A) <d1 <d2(B)d1< d2<(C)d1<< d2(D)d2<d1<

解析:,故d2<d1<,选D。

试题详情

40. 如图,P是正角形ABC所在平面外一点,M、N分别是AB和PC的中点,且PA=PB=PC=AB=a。

(1)求证:MN是AB和PC的公垂线

(2)求异面二直线AB和PC之间的距离

解析:(1)连结AN,BN,∵△APC与△BPC是全等的正三角形,又N是PC的中点

∴AN=BN

又∵M是AB的中点,∴MN⊥AB

同理可证MN⊥PC

又∵MN∩AB=M,MN∩PC=N

∴MN是AB和PC的公垂线。

(2)在等腰在角形ANB中,

即异面二直线AB和PC之间的距离为.

试题详情

38. 在空间四边形ABCD中,AD=BC=2,E、F分别是AB、CD的中点,EF=,求AD与BC所成角的大小

(本题考查中位线法求异面二直线所成角)

解析:取BD中点M,连结EM、MF,则

  39. 如图,在正方体ABCD-A1B1C1D1中,M、N分别为棱AA1和BB1的中点,求异面直线CM与D1N所成角的正弦值.(14分)

(本题考查平移法,补形法等求异面二直线所成角)

解析:取DD1中点G,连结BG,MG,MB,GC得矩形MBCG,记MC∩BG=0

则BG和MC所成的角为异面直线CM与D1N所成的角.

  而CM与D1N所成角的正弦值为

试题详情


同步练习册答案