题目列表(包括答案和解析)
又∵∠A=∠C,∠B=∠B
∴∠ADB=∠CEB
2.∵∠B+∠C+∠BAC=180°
∴∠BAC=180°-∠B-∠C=180°-30°-66°=84°
又∵AD平分∠BAC
∴∠DAC=
∠BAC=
×84°=42°
∵AE⊥BC
∴∠EAC=90°-∠C=90°-66°=24°
∴∠DAE=∠DAC-∠EAC=42°-24°=18°
3.∵四边形ABCD是正方形
∴∠A=∠B=90°
∴∠AFE=90°-∠AEF=90°-30°=60°
∠BFC=90°-∠BCF=90°-28°=62°
∴∠EFC=180°-∠AFE-∠BFC=180°-60°-62°=58°
答案:
3.如图,在正方形ABCD中,已知∠AEF=30°,∠BCF=28°,求∠EFC的度数.
![]()
1.如图,已知:∠A=∠C.
求证:∠ADB=∠CEB.
![]()
2.如图,在△ABC中,∠B=30°,∠C=65°,AE⊥BC于E,AD平分∠BAC,求∠DAE的度数.
![]()
1.直角三角形的两个锐角___________.
2.在△ABC中,∠A:∠B:∠C=1:2:3,则△ABC是________三角形.
3.在△ABC中,∠A=∠B=
∠C,则∠C=_______.
4.在△ABC中,∠A+∠B=120°,∠A-∠B+∠C=120°,则∠A=_______,∠B=______.
5.如图,在△ABC中,∠BAC=90°,AD⊥BC于D,则∠B=∠________,∠C=∠________.
6.在一个三角形中,最多有______个钝角,至少有______个锐角.
1.如图所示,BC⊥AD,垂足是C,∠B=∠D,则∠AED与∠BED的
关系是( )
A.∠AED>∠BED
B.∠AED<∠BED;
C.∠AED=∠BED
D.无法确定
2.关于三角形内角的叙述错误的是( )
A.三角形三个内角的和是180°; B.三角形两个内角的和一定大于60°
C.三角形中至少有一个角不小于60°; D.一个三角形中最大的角所对的边最长
3.下列叙述正确的是( )
A.钝角三角形的内角和大于锐角三角形的内角和;
B.三角形两个内角的和一定大于第三个内角;
C.三角形中至少有两个锐角;
D.三角形中至少有一个锐角.
4.△ABC中,∠A+∠B=120°,∠C=∠A,则△ABC是( )
A.钝角三角形 B.等腰直角三角形; C.直角三角形 D.等边三角形
5.在△ABC中,∠A-∠B=35°,∠C=55°,则∠B等于( )
A.50° B.55° C.45° D.40°
6.三角形中最大的内角一定是( )
A.钝角 B.直角; C.大于60°的角 D.大于等于60°的角
∵∠A+∠D=90°+90°=180°
∴AB∥DE
∴CF∥DE
∴∠FCE=∠E
∴∠BCF+∠FCE=∠B+∠E
即∠BCE=∠B+∠E
∴∠ABC=∠DCB
又∵BE、CF分别平分∠ABC和∠DCB
∴∠EBC=
∠ABC ∠FCB=
∠DCB
∴∠EBC=∠FCB
∴BE∥CF
∴∠D+∠DCB=180°,∠BCA=∠DAC
∴∠DCB=180°-∠D=180°-120°=60°
又∵∠DCA=20°
∴∠BCA=∠DCB-∠DCA=60°-20°=40°
∴∠DAC=∠BCA=40°
2.∵∠1=∠5 ∠1=∠2
∴∠5=∠2
∴a∥b
∴∠3+∠4=180°
3.∵AD∥BC
∴∠B+∠A=180° ∠D+∠C=180°
又∵∠A=135° ∠C=65°
∴∠B=45° ∠D=115°
∴∠B+∠D=45°+115°=160°
另解:ABCD为四边形
∴∠A+∠B+∠C+∠D=360°
∴∠B+∠D=360°-∠A-∠C=360°-135°-65°=160°
![]()
答案:
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com