∵|m|<
,∴m=-
,n=1.
(18)本小题主要考查概率统计的基础知识,运用数学知识解决问题的能力.满分12分.
解:(Ⅰ)依题意,甲答对试题数ξ的概率分布如下:
ξ
0
1
2
3
P
由(Ⅰ)得 f(x)=2sin2(x+
)+1.
即x=-
.
(Ⅱ)函数y=2sin2x的图象按向量c=(m,n)平移后得到函数y=2sin2(x-m)+n的图象,即函数y=f(x)的图象.
∵-
≤x≤
,∴-
≤2x+
≤
,∴2x+
=-
,
由1+2sin(2x+
)=1-
,得sin(2 x +
)=-
.
解:(Ⅰ)依题设,f(x)=2cos2x+
sin2x=1+2sin(2x+
).
(13)4
(14)1/2 (15)1,3 (16)2/3
(17) 本小题主要考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技能,考查运算能力.满分12分.
(Ⅱ)若直线l不过原点且与x轴交于点S,与y轴交于点T,试求
的取值范围.
2004年普通高等学校招生全国统一考试
数学答案(理工类)(福建卷)
(1)A (2)C (3)D (4)A (5)B (6)C
(7)B (8)B (9)A (10)D (11)D (12)B
如图,P是抛物线C:y=
x2上一点,直线l过点P且与抛物线C交于另一点Q.
(Ⅰ)若直线l与过点P的切线垂直,求线段PQ中点M的轨迹方程;
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com