21.已知函数
.
(1)设
是正数组成的数列,前n项和为
,其中
.若点![]()
在函数
的图象上,求证:点
也在
的图象上;
(2)求函数
在区间
内的极值.
20.已知函数
,曲线
在
处的切线方程![]()
(1)若
,求函数的表达式;
(2)在(1)的条件下,求函数的单调区间;
(3)若函数在区间[-2,1]上单调递增,求
的取值范围.
19.一艘轮船在航行中的燃料费和它的速度的立方成正比,已知速度为每小时10海里时,燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问轮船的速度是多少时,航行1海里所需的费用总和为最小?
18.已知
,命题
函数
在
上单调递减,命题
曲线
与
轴交于不同的两点,若
为假命题,
为真命题,求实数
的取值范围.
17.设
,当
时,
恒成立,则实数
的取值范围为
![]()
16.方程
有三个不同的实根,则
的取值范围是_____________.
15.曲线
在点
处的切线方程为_________________.
14.函数
的单调递增区间是_____________![]()
13.命题:“若
,则
,或
”的否命题是_________________________________.
12.
=________.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com