3.关注学生用差分方程解决实际问题的能力。特别应鼓励学生能从实际问题建立差分方程,并能结合实际问题引导学生讨论解的实际意义。
2.通过对一阶线性差分方程的讨论,使学生理解方程解的结构,即通解、特解以及与齐次方程通解的关系。这不仅仅是为了求解差分方程,而且对将来进一步学习线性方程组、常微分方程等内容都有所帮助。
1.教学过程和教材编写,应通过大量实例,帮助学生理解差分的概念和差分方程的意义,力求深入浅出。
6.完成一个学习总结报告。报告应包括三方面的内容:(1)知识的总结。对本专题内容的整体结构和内容的理解,对刻画离散变量变化的数学方法的认识。(2)拓展。通过查阅资料、调查研究、访问求教、独立思考,进一步探讨差分方程及其应用。(3)对本专题学习的感受。
说明与建议
5.应用
(1)学会用差分方程和差分方程组解决一些简单的实际问题。
(2)初步体会连续变量离散化的思想,能用它来讨论一些简单的问题。
4.通过具体实例(如种群增长等),体会方程xn+1=kxn(1-xn)是十分有用的数学模型。借助计算工具,用迭代法分别对k取一些特殊值(如0<k≤1,1<k≤3,k=3.4,k=3.55,k=3.7)的情形,讨论xn的变化,初步了解非线性问题的复杂性。
3.(二元)一阶线性差分方程组![]()
(1)通过一些实例,认识一阶线性差分方程组是描述现实世界的一个重要模型。
(2)了解一阶线性差分方程组的通解、特解与其相应齐次方程组通解的关系。
(3)给定初值,会用迭代法求一阶线性差分方程组的解;能写出求解的算法框图。
(4)对给定的具体方程组,能初步讨论当n→∞时,解(数列)的变化趋势(收敛、发散、周期)。
2.一阶线性差分方程xn+1=kxn+b
(1)通过一些具体实例,体会方程xn+1=kxn+b是十分有用的数学模型。
(2)理解方程xn+1=kxn+b中,当b=0(即方程为齐次方程)时,其解为等比数列;当k=1(即差分为常数)时,其解为等差数列。
(3)认识方程xn+1=kxn+b的通解、特解,了解方程的解与相应的齐次方程xn+1=kxn通解的关系;能给出方程xn+1=kxn+b的通解公式。
1.数列的差分
(1)通过一些具体实例,理解数列差分的概念。
(2)理解数列的一、二阶差分以及它们对描述数列变化的意义,结合数列(作为函数)的图象,了解差分与数列的增减、极值、数列图象的凹凸的关系。
6.这部分内容的教学应让学生认识到,矩阵从实际生活需要中产生,并在实际的问题中有着广泛的应用,体验数学的抽象更有助于人们对问题的思考与解决。
数列与差分
随着信息技术的日益普及和发展,离散数学的应用越来越广泛。差分和差分方程是描述离散变量变化的重要工具,在理论上是十分重要的,并且有广泛的应用。
本专题初步研究数列的差分和简单的差分方程,使学生掌握一些用离散变量分析解决问题的方法。
内容与要求
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com