24. The hunter calmly picked up his gun,took the aim and fired, ______ the beast.
A.bringing down B.pulling down C.falling dowing D.putting down
23.Hearing that most of the members voted against her, she ______ a smiile.
A.wore B.
managed
C.performed trol
led
22. It is a strange phenomenon that some young people today think it is their parents’responsibility to earn money and_______ to spend it.
A.them B.they C.their D.theirs
第一节 单项填空(共15小题;每小题1分,满分15分)
从A、B、C、D四个选项中,选出可以填入空白处的最佳选项。
21.. Department of Homeland Security and CIA produced ______ joint report on Monday warning that ______ next 911 could in fact occur on ______ different date.
A.the; a; the B.a;
the;
a C./; the;
the D.a; /; the
22.(本小题满分14分)已知△ABC的面积为S,满足≤S≤3,且
·
=6,
与
的夹角为θ.
(1)求角θ的取值范围;
(2)求函数f(θ)=sin2θ+2sinθ·cosθ+3cos2θ的最小值.
解:(1)由题意知,
·
=|
|·|
|cosθ=6,
①
S=|
|·|
|sin(π-θ)=|
|·|
|sinθ,
②
由,得=tanθ,即3tanθ=S.
由≤S≤3,得≤3tanθ≤3,
即≤tanθ≤1.
又θ为
与
的夹角,
∴θ∈(0,π],∴θ∈[,].
(2)f(θ)=sin2θ+2sinθ·cosθ+3cos2θ
=1+sin2θ+2cos2θ
=2+sin2θ+cos2θ
=2+sin(2θ+).
∵θ∈[,],∴2θ+∈[,],
∴当2θ+=,即θ=时,f(θ)取得最小值为3.
21.(本小题满分12分)已知向量a=(cosx,sinx),b=(-cosx,cosx),c=(-1,0).
(1)若x=,求向量a,c的夹角;
(2)当x∈[,]时,求函数f(x)=2a·b+1的最大值.
解:(1)设a,c的夹角为θ,当x=时,
cos〈a,c〉==
=-cosx=-cos=cos.
∵0≤〈a,c〉≤π,∴〈a,c〉=.
(2)f(x)=2a·b+1=2(-cos2x+sinxcosx)+1
=2sinxcosx-(2cos2x-1)=sin2x-cos2x
=sin(2x-).
∵x∈[,],
∴2x-∈[,2π],
∴sin(2x-)∈[-1,],
∴当2x-=,即x=时,f(x)max=1.
20.(本小题满分12分)在△ABC中,角A、B、C所对的边长分别为a、b、c,已知向量m=(1,2sinA),n=(sinA,1+cosA),且满足m∥n,b+c=a.
(1)求角A的大小;
(2)求sin的值.
解:(1)∵m∥n,∴1+cosA=2sin2A,
即2cos2A+cosA-1=0,解得cosA=-1(舍去),cosA=.
又0<A<π,∴A=.
(2)∵b+c=a,
∴由正弦定理可得sinB+sinC=sinA=.
又C=π-(A+B)=-B,∴sinB+sin=,
即sinB+cosB=,∴sin=.
19.(本小题满分12分)已知向量a=(cos(-θ),sin(-θ)),b=(cos(-θ),sin(-θ)).
(1)求证:a⊥b;
(2)若存在不等于0的实数k和t,使x=a+(t2+3)b,
y=-ka+tb,满足x⊥y,试求此时的最小值.
解:(1)证明:∵a·b
=cos(-θ)·cos(-θ)+sin(-θ)·sin(-θ)
=sinθcosθ-sinθcosθ=0.
∴a⊥b.
(2)由x⊥y得:x·y=0,
即[a+(t2+3)b]·(-ka+tb)=0,
∴-ka2+(t3+3t)b2+[t-k(t2+3)]a·b=0,
∴-k|a|2+(t3+3t)|b|2=0.
又|a|2=1,|b|2=1,
∴-k+t3+3t=0,∴k=t3+3t.
∴==t2+t+3=(t+)2+.
故当t=-时,有最小值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com