0  420330  420338  420344  420348  420354  420356  420360  420366  420368  420374  420380  420384  420386  420390  420396  420398  420404  420408  420410  420414  420416  420420  420422  420424  420425  420426  420428  420429  420430  420432  420434  420438  420440  420444  420446  420450  420456  420458  420464  420468  420470  420474  420480  420486  420488  420494  420498  420500  420506  420510  420516  420524  447090 

24. The hunter calmly picked up his gun,took the aim and fired, ______ the beast.

   A.bringing down B.pulling down  C.falling dowing  D.putting down

试题详情

23.Hearing that most of the members voted against her, she ______ a smiile.

   A.wore     B. managed   C.performed  trolled

试题详情

22. It is a strange phenomenon that some young people today think it is their parents’responsibility to earn money and_______ to spend it.

   A.them     B.they     C.their     D.theirs

试题详情

第一节     单项填空(共15小题;每小题1分,满分15分)

从A、B、C、D四个选项中,选出可以填入空白处的最佳选项。

21.. Department of Homeland Security and CIA produced ______ joint report on Monday warning that ______ next 911 could in fact occur on ______ different date.

   A.the; a; the   B.a; the; a   C./; the; the   D.a; /; the

试题详情

22.(本小题满分14分)已知△ABC的面积为S,满足≤S≤3,且·=6,的夹角为θ.

(1)求角θ的取值范围;

(2)求函数f(θ)=sin2θ+2sinθ·cosθ+3cos2θ的最小值.

解:(1)由题意知,·=| |·| |cosθ=6,            ①

S=||·||sin(πθ)=||·||sinθ,               ②

由,得=tanθ,即3tanθS.

由≤S≤3,得≤3tanθ≤3,

即≤tanθ≤1.

θ的夹角,

θ∈(0,π],∴θ∈[,].

(2)f(θ)=sin2θ+2sinθ·cosθ+3cos2θ

=1+sin2θ+2cos2θ

=2+sin2θ+cos2θ

=2+sin(2θ+).

θ∈[,],∴2θ+∈[,],

∴当2θ+=,即θ=时,f(θ)取得最小值为3.

试题详情

21.(本小题满分12分)已知向量a=(cosx,sinx),b=(-cosx,cosx),c=(-1,0).

(1)若x=,求向量ac的夹角;

(2)当x∈[,]时,求函数f(x)=2a·b+1的最大值.

解:(1)设ac的夹角为θ,当x=时,

cos〈ac〉==

=-cosx=-cos=cos.

∵0≤〈ac〉≤π,∴〈ac〉=.

(2)f(x)=2a·b+1=2(-cos2x+sinxcosx)+1

=2sinxcosx-(2cos2x-1)=sin2x-cos2x

=sin(2x-).

x∈[,],

∴2x-∈[,2π],

∴sin(2x-)∈[-1,],

∴当2x-=,即x=时,f(x)max=1.

试题详情

20.(本小题满分12分)在△ABC中,角ABC所对的边长分别为abc,已知向量m=(1,2sinA),n=(sinA,1+cosA),且满足mnb+ca.

(1)求角A的大小;

(2)求sin的值.

解:(1)∵mn,∴1+cosA=2sin2A

即2cos2A+cosA-1=0,解得cosA=-1(舍去),cosA=.

又0<Aπ,∴A=.

(2)∵b+ca

∴由正弦定理可得sinB+sinC=sinA=.

Cπ-(A+B)=-B,∴sinB+sin=,

即sinB+cosB=,∴sin=.

试题详情

19.(本小题满分12分)已知向量a=(cos(-θ),sin(-θ)),b=(cos(-θ),sin(-θ)).

(1)求证:ab

(2)若存在不等于0的实数kt,使xa+(t2+3)b

y=-ka+tb,满足xy,试求此时的最小值.

解:(1)证明:∵a·b

=cos(-θ)·cos(-θ)+sin(-θ)·sin(-θ)

=sinθcosθ-sinθcosθ=0.

ab.

(2)由xy得:x·y=0,

即[a+(t2+3)b]·(-ka+tb)=0,

∴-ka2+(t3+3t)b2+[tk(t2+3)]a·b=0,

∴-k|a|2+(t3+3t)|b|2=0.

又|a|2=1,|b|2=1,

∴-k+t3+3t=0,∴kt3+3t.

∴==t2+t+3=(t+)2+.

故当t=-时,有最小值.

试题详情


同步练习册答案